Energy Efficient Hardware Implementation of Neural Networks Using Emerging Non-Volatile Memory Devices


Book Description

Deep learning based on neural networks emerged as a robust solution to various complex problems such as speech recognition and visual recognition. Deep learning relies on a great amount of iterative computation on a huge dataset. As we need to transfer a large amount of data and program between the CPU and the memory unit, the data transfer rate through a bus becomes a limiting factor for computing speed, which is known as Von Neumann bottleneck. Moreover, the data transfer between memory and computation spends a large amount of energy and cause significant delay. To overcome the limitation of Von Neumann bottleneck, neuromorphic computing with emerging nonvolatile memory (eNVM) devices has been proposed to perform iterative calculations in memory without transferring data to a processor. This dissertation presents energy efficient hardware implementation of neuromorphic computing applications using phase change memory (PCM), subquantum conductive bridge random access memory (CBRAM), Ag-based CBRAM, and CuOx-based resistive random access memory (RRAM). Although substantial progress has been made towards in-memory computing with synaptic devices, compact nanodevices implementing non-linear activation functions for efficient full-hardware implementation of deep neural networks is still missing. Since DNNs need to have a very large number of activations to achieve high accuracy, it is critical to develop energy and area efficient implementations of activation functions, which can be integrated on the periphery of the synaptic arrays. In this dissertation, we demonstrate a Mott activation neuron that implements the rectified linear unit function in the analogue domain. The integration of Mott activation neurons with a CBRAM crossbar array is also demonstrated in this dissertation.




Normally-Off Computing


Book Description

As a step toward ultimate low-power computing, this book introduces normally-off computing, which involves inactive components of computer systems being aggressively powered off with the help of new non-volatile memories (NVMs). Because the energy consumption of modern information devices strongly depends on both hardware and software, co-design and co-optimization of hardware and software are indispensable to improve energy efficiency. The book discusses various topics including (1) details of low-power technologies including power gating, (2) characteristics of several new-generation NVMs, (3) normally-off computing architecture, (4) important technologies for implementing normally-off computing, (5) three practical implementations: healthcare, mobile information devices, and sensor network systems for smart city applications, and (6) related research and development. Bridging computing methodology and emerging memory devices, the book is designed for both hardware and software designers, engineers, and developers as comprehensive material for understanding normally-off computing.




Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices


Book Description

This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.




Emerging Memory and Computing Devices in the Era of Intelligent Machines


Book Description

Computing systems are undergoing a transformation from logic-centric towards memory-centric architectures, where overall performance and energy efficiency at the system level are determined by the density, performance, functionality and efficiency of the memory, rather than the logic sub-system. This is driven by the requirements of data-intensive applications in artificial intelligence, autonomous systems, and edge computing. We are at an exciting time in the semiconductor industry where several innovative device and technology concepts are being developed to respond to these demands, and capture shares of the fast growing market for AI-related hardware. This special issue is devoted to highlighting, discussing and presenting the latest advancements in this area, drawing on the best work on emerging memory devices including magnetic, resistive, phase change, and other types of memory. The special issue is interested in work that presents concepts, ideas, and recent progress ranging from materials, to memory devices, physics of switching mechanisms, circuits, and system applications, as well as progress in modeling and design tools. Contributions that bridge across several of these layers are especially encouraged.




Energy-Efficient Devices and Circuits for Neuromorphic Computing


Book Description

In today's world, where the demand for advanced computing systems has skyrocketed, energy efficiency has become a top priority. The development of energy-efficient neuromorphic computing systems has gained significant attention due to their ability to mimic the human brain's low-power, high-performance computing capabilities. The field of neuromorphic computing is at the forefront of research and development in emerging technologies such as artificial intelligence, robotics, and cognitive computing. Energy-Efficient Devices and Circuits for Neuromorphic Computing is an important contribution to the field of neuromorphic computing. The book covers a wide range of topics, from the fundamentals of neuron dynamics to the latest developments in energy-efficient CMOS devices and circuits, emerging post-CMOS devices, and non-volatile memory crossbar arrays for energy-efficient neuromorphic computing. It discusses the theoretical analysis of the learning process in spiking neural networks, two-terminal neuromorphic devices, material-engineered neuromorphic devices, and novel biomimetic Si devices for energy-efficient neuromorphic computing architecture. Overall, it will be an essential resource for researchers, engineers, and students working in the fields of neuromorphic computing and energy-efficient electronics.• Comprehensive coverage of neuromorphic computing based upon energy-efficient electronic devices and circuits, providing a deep understanding of the principles and applications of these fields.• Practical guidance and numerous examples, making it an excellent resource for researchers, engineers, and students designing energy-efficient neuromorphic computing systems.• Detailed coverage of emerging post-CMOS devices such as memristors and MTJs and their potential applications in energy-efficient synapses and neurons, providing readers with a cutting-edge perspective on the latest developments in the field




Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing


Book Description

This book presents recent advances towards the goal of enabling efficient implementation of machine learning models on resource-constrained systems, covering different application domains. The focus is on presenting interesting and new use cases of applying machine learning to innovative application domains, exploring the efficient hardware design of efficient machine learning accelerators, memory optimization techniques, illustrating model compression and neural architecture search techniques for energy-efficient and fast execution on resource-constrained hardware platforms, and understanding hardware-software codesign techniques for achieving even greater energy, reliability, and performance benefits.







Non-Volatile In-Memory Computing by Spintronics


Book Description

Exa-scale computing needs to re-examine the existing hardware platform that can support intensive data-oriented computing. Since the main bottleneck is from memory, we aim to develop an energy-efficient in-memory computing platform in this book. First, the models of spin-transfer torque magnetic tunnel junction and racetrack memory are presented. Next, we show that the spintronics could be a candidate for future data-oriented computing for storage, logic, and interconnect. As a result, by utilizing spintronics, in-memory-based computing has been applied for data encryption and machine learning. The implementations of in-memory AES, Simon cipher, as well as interconnect are explained in details. In addition, in-memory-based machine learning and face recognition are also illustrated in this book.




Emerging Technology and Architecture for Big-data Analytics


Book Description

This book describes the current state of the art in big-data analytics, from a technology and hardware architecture perspective. The presentation is designed to be accessible to a broad audience, with general knowledge of hardware design and some interest in big-data analytics. Coverage includes emerging technology and devices for data-analytics, circuit design for data-analytics, and architecture and algorithms to support data-analytics. Readers will benefit from the realistic context used by the authors, which demonstrates what works, what doesn’t work, and what are the fundamental problems, solutions, upcoming challenges and opportunities. Provides a single-source reference to hardware architectures for big-data analytics; Covers various levels of big-data analytics hardware design abstraction and flow, from device, to circuits and systems; Demonstrates how non-volatile memory (NVM) based hardware platforms can be a viable solution to existing challenges in hardware architecture for big-data analytics.




Machine Learning and Non-volatile Memories


Book Description

This book presents the basics of both NAND flash storage and machine learning, detailing the storage problems the latter can help to solve. At a first sight, machine learning and non-volatile memories seem very far away from each other. Machine learning implies mathematics, algorithms and a lot of computation; non-volatile memories are solid-state devices used to store information, having the amazing capability of retaining the information even without power supply. This book will help the reader understand how these two worlds can work together, bringing a lot of value to each other. In particular, the book covers two main fields of application: analog neural networks (NNs) and solid-state drives (SSDs). After reviewing the basics of machine learning in Chapter 1, Chapter 2 shows how neural networks can mimic the human brain; to accomplish this result, neural networks have to perform a specific computation called vector-by-matrix (VbM) multiplication, which is particularly power hungry. In the digital domain, VbM is implemented by means of logic gates which dictate both the area occupation and the power consumption; the combination of the two poses serious challenges to the hardware scalability, thus limiting the size of the neural network itself, especially in terms of the number of processable inputs and outputs. Non-volatile memories (phase change memories in Chapter 3, resistive memories in Chapter 4, and 3D flash memories in Chapter 5 and Chapter 6) enable the analog implementation of the VbM (also called “neuromorphic architecture”), which can easily beat the equivalent digital implementation in terms of both speed and energy consumption. SSDs and flash memories are strictly coupled together; as 3D flash scales, there is a significant amount of work that has to be done in order to optimize the overall performances of SSDs. Machine learning has emerged as a viable solution in many stages of this process. After introducing the main flash reliability issues, Chapter 7 shows both supervised and un-supervised machine learning techniques that can be applied to NAND. In addition, Chapter 7 deals with algorithms and techniques for a pro-active reliability management of SSDs. Last but not least, the last section of Chapter 7 discusses the next challenge for machine learning in the context of the so-called computational storage. No doubt that machine learning and non-volatile memories can help each other, but we are just at the beginning of the journey; this book helps researchers understand the basics of each field by providing real application examples, hopefully, providing a good starting point for the next level of development.