Automotive Exhaust Emissions and Energy Recovery


Book Description

Concerns for fuel economy and reduced emissions have turned the attention of automotive internal combustion engine manufacturers to the exhaust system and towards technological system development to account for the significant levels of potential energy that can be recovered. The present volume on Automotive Exhaust Emissions and Energy Recovery for both gasoline and diesel engines is therefore both timely and appropriate. Whereas diesel engines have been predominantly turbocharged, only a relatively small percentage of gasoline engines are similarly equipped, which has led to significant efforts by engine manufacturers in recent years to downsize and down-speed these engines. On the other hand, the relative focus in diesel engine development in terms of emissions and exhaust energy recovery has shifted toward devices other than the turbocharger for enhanced energy recovery and emissions control technologies in order to allow the diesel engines of the future to keep up with the dual-demand for very low emissions and increasing levels of fuel economy. The book focuses on the exhaust system and the technologies and methods used to reduce emissions and increase fuel economy by capitalising on the exhaust gas energy availability (either in the form of gas kinetic energy or as waste heat extracted from the exhaust gas). It is projected that in the short to medium term, advances in exhaust emissions and energy recovery technologies will lead the way in internal combustion engine development and pave the way towards increasing levels of engine hybridisation until fully electric vehicle technology can claim a level of maturity and corresponding market shares to turn the bulk of this focus away from the internal combustion engine. This book is aimed at engine research professionals in the industry and academia, but also towards students of powertrain engineering. The collection of articles in this book reviews the fundamentals of relevance, recent exhaust system technologies, details recent or on-going projects and uncovers future research directions and potentials.







14th International Conference on Turbochargers and Turbocharging


Book Description

14th International Conference on Turbochargers and Turbocharging addresses current and novel turbocharging system choices and components with a renewed emphasis to address the challenges posed by emission regulations and market trends. The contributions focus on the development of air management solutions and waste heat recovery ideas to support thermal propulsion systems leading to high thermal efficiency and low exhaust emissions. These can be in the form of internal combustion engines or other propulsion technologies (eg. Fuel cell) in both direct drive and hybridised configuration. 14th International Conference on Turbochargers and Turbocharging also provides a particular focus on turbochargers, superchargers, waste heat recovery turbines and related air managements components in both electrical and mechanical forms.




Airborne Wind Energy


Book Description

This book provides in-depth coverage of the latest research and development activities concerning innovative wind energy technologies intended to replace fossil fuels on an economical basis. A characteristic feature of the various conversion concepts discussed is the use of tethered flying devices to substantially reduce the material consumption per installed unit and to access wind energy at higher altitudes, where the wind is more consistent. The introductory chapter describes the emergence and economic dimension of airborne wind energy. Focusing on “Fundamentals, Modeling & Simulation”, Part I includes six contributions that describe quasi-steady as well as dynamic models and simulations of airborne wind energy systems or individual components. Shifting the spotlight to “Control, Optimization & Flight State Measurement”, Part II combines one chapter on measurement techniques with five chapters on control of kite and ground stations, and two chapters on optimization. Part III on “Concept Design & Analysis” includes three chapters that present and analyze novel harvesting concepts as well as two chapters on system component design. Part IV, which centers on “Implemented Concepts”, presents five chapters on established system concepts and one chapter about a subsystem for automatic launching and landing of kites. In closing, Part V focuses with four chapters on “Technology Deployment” related to market and financing strategies, as well as on regulation and the environment. The book builds on the success of the first volume “Airborne Wind Energy” (Springer, 2013), and offers a self-contained reference guide for researchers, scientists, professionals and students. The respective chapters were contributed by a broad variety of authors: academics, practicing engineers and inventors, all of whom are experts in their respective fields.




Organic Rankine Cycle Technology for Heat Recovery


Book Description

This book on organic Rankine cycle technology presents nine chapters on research activities covering the wide range of current issues on the organic Rankine cycle. The first section deals with working fluid selection and component design. The second section is related to dynamic modeling, starting from internal combustion engines to industrial power plants. The third section discusses industrial applications of waste heat recovery, including internal combustion engines, LNG, and waste water. A comprehensive analysis of the technology and application of organic Rankine cycle systems is beyond the aim of the book. However, the content of this volume can be useful for scientists and students to broaden their knowledge of technologies and applications of organic Rankine cycle systems.







Bringing Thermoelectricity into Reality


Book Description

The disproportionate use of fossil fuels has turned into a serious environmental issue. Thus, we are encountering one of the biggest challenges of the twenty-first century, satisfying the energy demand with respect to the environment. Thermoelectricity is an emerging technology, which contributes to reducing the impact of the use of traditional technologies, harvesting the waste heat, and eliminating the use of refrigerants. The book Bringing Thermoelectricity into Reality covers the current thermoelectric investigations: the study of novel thermoelectric materials, the development of computational models, the design of proper assemblies, and the optimization of thermal designs, as well as novel thermoelectric generators, coolers, and heating applications. This book looks for the definitive thermoelectric applications applied to everyday life.




Organic Rankine Cycle for Energy Recovery System


Book Description

The rising trend in the global energy demand poses new challenges to humankind. The energy and mechanical engineering sectors are called to develop new and more environmentally friendly solutions to harvest residual energy from primary production processes. The Organic Rankine Cycle (ORC) is an emerging energy system for power production and waste heat recovery. In the near future, this technology can play an increasing role within the energy generation sectors and can help achieve the carbon footprint reduction targets of many industrial processes and human activities. This Special Issue focuses on selected research and application cases of ORC-based waste heat recovery solutions. Topics included in this publication cover the following aspects: performance modeling and optimization of ORC systems based on pure and zeotropic mixture working fluids; applications of waste heat recovery via ORC to gas turbines and reciprocating engines; optimal sizing and operation of ORC under combined heat and power and district heating application; the potential of ORC on board ships and related issues; life cycle analysis for biomass application; ORC integration with supercritical CO2 cycle; and the proper design of the main ORC components, including fluid dynamics issues. The current state of the art is considered and some cutting-edge ORC technology research activities are examined in this book.




Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles


Book Description

Technologies and Approaches to Reducing the Fuel Consumption of Medium- and Heavy-Duty Vehicles evaluates various technologies and methods that could improve the fuel economy of medium- and heavy-duty vehicles, such as tractor-trailers, transit buses, and work trucks. The book also recommends approaches that federal agencies could use to regulate these vehicles' fuel consumption. Currently there are no fuel consumption standards for such vehicles, which account for about 26 percent of the transportation fuel used in the U.S. The miles-per-gallon measure used to regulate the fuel economy of passenger cars. is not appropriate for medium- and heavy-duty vehicles, which are designed above all to carry loads efficiently. Instead, any regulation of medium- and heavy-duty vehicles should use a metric that reflects the efficiency with which a vehicle moves goods or passengers, such as gallons per ton-mile, a unit that reflects the amount of fuel a vehicle would use to carry a ton of goods one mile. This is called load-specific fuel consumption (LSFC). The book estimates the improvements that various technologies could achieve over the next decade in seven vehicle types. For example, using advanced diesel engines in tractor-trailers could lower their fuel consumption by up to 20 percent by 2020, and improved aerodynamics could yield an 11 percent reduction. Hybrid powertrains could lower the fuel consumption of vehicles that stop frequently, such as garbage trucks and transit buses, by as much 35 percent in the same time frame.




Internal Combustion Engines and Powertrain Systems for Future Transport 2019


Book Description

With the changing landscape of the transport sector, there are also alternative powertrain systems on offer that can run independently of or in conjunction with the internal combustion (IC) engine. This shift has actually helped the industry gain traction with the IC Engine market projected to grow at 4.67% CAGR during the forecast period 2019-2025. It continues to meet both requirements and challenges through continual technology advancement and innovation from the latest research. With this in mind, the contributions in Internal Combustion Engines and Powertrain Systems for Future Transport 2019 not only cover the particular issues for the IC engine market but also reflect the impact of alternative powertrains on the propulsion industry. The main topics include: • Engines for hybrid powertrains and electrification • IC engines • Fuel cells • E-machines • Air-path and other technologies achieving performance and fuel economy benefits • Advances and improvements in combustion and ignition systems • Emissions regulation and their control by engine and after-treatment • Developments in real-world driving cycles • Advanced boosting systems • Connected powertrains (AI) • Electrification opportunities • Energy conversion and recovery systems • Modified or novel engine cycles • IC engines for heavy duty and off highway Internal Combustion Engines and Powertrain Systems for Future Transport 2019 provides a forum for IC engine, fuels and powertrain experts, and looks closely at developments in powertrain technology required to meet the demands of the low carbon economy and global competition in all sectors of the transportation, off-highway and stationary power industries.