Enhancing the Resilience of the Nation's Electricity System


Book Description

Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.







Urban Energy Systems


Book Description

This book analyses the technical and social systems that satisfy these needs and asks how methods can be put into practice to achieve this.




Power Systems Resilience


Book Description

This book presents intuitive explanations of the principles and applications of power system resiliency, as well as a number of straightforward and practical methods for the impact analysis of risk events on power system operations. It also describes the challenges of modelling, distribution networks, optimal scheduling, multi-stage planning, deliberate attacks, cyber-physical systems and SCADA-based smart grids, and how to overcome these challenges. Further, it highlights the resiliency issues using various methods, including strengthening the system against high impact events with low frequency and the fast recovery of the system properties. A large number of specialists have collaborated to provide innovative solutions and research in power systems resiliency. They discuss the fundamentals and contemporary materials of power systems resiliency, theoretical and practical issues, as well as current issues and methods for controlling the risk attacks and other threats to AC power systems. The book includes theoretical research, significant results, case studies, and practical implementation processes to offer insights into electric power and engineering and energy systems. Showing how systems should respond in case of malicious attacks, and helping readers to decide on the best approaches, this book is essential reading for electrical engineers, researchers and specialists. The book is also useful as a reference for undergraduate and graduate students studying the resiliency and reliability of power systems.




Climate Impacts on Energy Systems


Book Description

"While the energy sector is a primary target of efforts to arrest and reverse the growth of greenhouse gas emissions and lower the carbon footprint of development, it is also expected to be increasingly affected by unavoidable climate consequences from the damage already induced in the biosphere. Energy services and resources, as well as seasonal demand, will be increasingly affected by changing trends, increasing variability, greater extremes and large inter-annual variations in climate parameters in some regions. All evidence suggests that adaptation is not an optional add-on but an essential reckoning on par with other business risks. Existing energy infrastructure, new infrastructure and future planning need to consider emerging climate conditions and impacts on design, construction, operation, and maintenance. Integrated risk-based planning processes will be critical to address the climate change impacts and harmonize actions within and across sectors. Also, awareness, knowledge, and capacity impede mainstreaming of climate adaptation into the energy sector. However, the formal knowledge base is still nascent?information needs are complex and to a certain extent regionally and sector specific. This report provides an up-to-date compendium of what is known about weather variability and projected climate trends and their impacts on energy service provision and demand. It discusses emerging practices and tools for managing these impacts and integrating climate considerations into planning processes and operational practices in an environment of uncertainty. It focuses on energy sector adaptation, rather than mitigation which is not discussed in this report. This report draws largely on available scientific and peer-reviewed literature in the public domain and takes the perspective of the developing world to the extent possible."




Future Modern Distribution Networks Resilience


Book Description

Future Modern Distribution Networks Resilience examines the combined impact of low-probability and high-impact events on modern distribution systems' resilience. Using practical guidance, the book provides comprehensive approaches for improving energy systems' resilience by utilizing infrastructure and operational strategies. Divided in three parts, Part One provides a conceptual introduction and review of power system resilience, including topics such as risk and vulnerability assessment in power systems, resilience metrics, and power systems operation and planning. Part Two discusses modelling of vulnerability and resilience evaluation indices and cost-benefit analysis. Part Three reviews infrastructure and operational strategies to improve power system resilience, including robust grid hardening strategies, mobile energy storage and electric vehicles, and networked microgrids and renewable energy resources. With a strong focus on economic results and cost-effectives, Future Modern Distribution Networks Resilience is a practical reference for students, researchers and engineers interested in power engineering, energy systems, and renewable energy. - Reviews related concepts to active distribution systems resilience before, during, and after a sudden disaster - Presents analysis of risk and vulnerability for reliable evaluation, sustainable operation, and accurate planning of energy grids against low-probability and high-impact events - Highlights applications of practical metrics for resilience assessment of future energy networks - Provides guidance for the development of cost-effective resilient techniques for reducing the vulnerability of electrical grids to severe disasters




Control and Optimization Methods for Complex System Resilience


Book Description

This book provides a systematic framework to enhance the ability of complex dynamical systems in risk identification, security assessment, system protection, and recovery with the assistance of advanced control and optimization technologies. By treating external disturbances as control inputs, optimal control approach is employed to identify disruptive disturbances, and online security assessment is conducted with Gaussian process and converse Lyapunov function. Model predictive approach and distributed optimization strategy are adopted to protect the complex system against critical contingencies. Moreover, the reinforcement learning method ensures the efficient restoration of complex systems from severe disruptions. This book is meant to be read and studied by researchers and graduates. It offers unique insights and practical methodology into designing and analyzing complex dynamical systems for resilience elevation.




Terrorism and the Electric Power Delivery System


Book Description

The electric power delivery system that carries electricity from large central generators to customers could be severely damaged by a small number of well-informed attackers. The system is inherently vulnerable because transmission lines may span hundreds of miles, and many key facilities are unguarded. This vulnerability is exacerbated by the fact that the power grid, most of which was originally designed to meet the needs of individual vertically integrated utilities, is being used to move power between regions to support the needs of competitive markets for power generation. Primarily because of ambiguities introduced as a result of recent restricting the of the industry and cost pressures from consumers and regulators, investment to strengthen and upgrade the grid has lagged, with the result that many parts of the bulk high-voltage system are heavily stressed. Electric systems are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. Such an attack could be carried out by knowledgeable attackers with little risk of detection or interdiction. Further well-planned and coordinated attacks by terrorists could leave the electric power system in a large region of the country at least partially disabled for a very long time. Although there are many examples of terrorist and military attacks on power systems elsewhere in the world, at the time of this study international terrorists have shown limited interest in attacking the U.S. power grid. However, that should not be a basis for complacency. Because all parts of the economy, as well as human health and welfare, depend on electricity, the results could be devastating. Terrorism and the Electric Power Delivery System focuses on measures that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the delivery of conventional electric power has been disrupted.




Resilience in Energy, Infrastructure, and Natural Resources Law


Book Description

The number of severe and sometimes catastrophic disruptive events has been rapidly increasing. Extreme weather events including floods, wildfires, hurricanes, and other natural disasters have become both more frequent and more severe, whilst events such as the COVID-19 pandemic represent a global threat to public health with huge economic effects that recovery packages tried to address. These disruptive events, alone and in combination, have dramatic consequences on nature, human life, and the economy, calling for urgent action to mitigate their causes and adapt to their impacts. In response to discourses of collapsology and end-of-growth theories, this monograph offers an analytical approach to developing legal responses that can help ensure the needs of present and future generations can be met through energy systems, infrastructure development, and natural resources management in these times of disruption. 'Resilience' is, therefore, seen as a common framework for the interpretation and development of energy, infrastructure, and natural resources law. With a mix of thematic chapters and case studies from multiple jurisdictions, Resilience in Energy, Infrastructure, and Natural Resources Law maps and assesses legal responses to disruptive nature-based events, and examines possible legal pathways for more sustainable outcomes, based on its engagement with this concept of 'resilience' and social-ecological thinking.




Sustainable Cities in a Changing Climate


Book Description

Sustainable Cities in a Changing Climate Build and manage the sustainable cities of the future with this comprehensive guide Climate change is among the biggest challenges facing today’s cities, which are in turn a major factor in driving or mitigating climate change. It is no surprise then that urban planning authorities are under mounting pressure to create cityscapes suited to the 21st century. Sustainable Cities in a Changing Climate offers a systematic overview of the environmental and sustainability challenges facing urban planners and policymakers, and how to meet those challenges. Beginning with an analysis of how climate change impacts built environments, it proceeds to offer quantitative analysis and practical solutions for strengthening urban resilience. Sustainable Cities in a Changing Climate readers will also find: A future-oriented approach that accounts for both known and unknown threats Detailed discussion of threats including environmental changes, global pandemics, natural disasters, and more Case studies from around the globe, including biofuel generation in China and the 2022 World Cup in Qatar Sustainable Cities in a Changing Climate is indispensable for environmental engineers, urban planners and policymakers, and advanced students in environmental planning and architecture.