Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies


Book Description

This collection addresses the pressing needs for sustainable technologies with reduced energy consumption and environmental pollutions and the development and application of alternative sustainable energy to maintain a green environment and efficient and long-lasting energy supply. Contributors represent both industry and academia and focus on new and efficient energy technologies including innovative ore beneficiation, smelting technologies, and recycling and waste heat recovery, as well as emerging novel energy solutions. The volume also covers a broad range of mature and new technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Authors also explore the valorization of materials and their embodied energy including byproducts or coproducts from ferrous and nonferrous industries, batteries, electronics, and other complex secondary materials.




Advances in Carbon Capture


Book Description

Advances in Carbon Capture reviews major implementations of CO2 capture, including absorption, adsorption, permeation and biological techniques. For each approach, key benefits and drawbacks of separation methods and technologies, perspectives on CO2 reuse and conversion, and pathways for future CO2 capture research are explored in depth. The work presents a comprehensive comparison of capture technologies. In addition, the alternatives for CO2 separation from various feeds are investigated based on process economics, flexibility, industrial aspects, purification level and environmental viewpoints. - Explores key CO2 separation and compare technologies in terms of provable advantages and limitations - Analyzes all critical CO2 capture methods in tandem with related technologies - Introduces a panorama of various applications of CO2 capture




Energy Technology 2023


Book Description

Clean and sustainable energy is of paramount importance for industrial activities, economic development, environment, and public welfare. Aiming to reach NetZero, researchers in both academia and industry as well as policymakers are now putting tremendous efforts into the generation, storage, and applications of clean energy. This collection focuses on new and efficient energy technologies including innovative ore beneficiation, smelting technologies, recycling and waste heat recovery, and emerging novel energy solutions. The volume also covers a broad range of mature and new technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal intensity and pollutants, and reduce carbon dioxide and other greenhouse emissions. Topics include, but are not limited to:• Energy efficient technologies for minerals, metals & materials processing • Clean energy technologies, such as biomass, solar, wind, geothermal, nuclear including SMRs, hydrogen, etc. • Renewable energy resources to reduce the consumption of traditional fossil fuels • Emerging technologies for renewable energy harvesting, conversion, and storage • New concepts or devices for energy generation, conversion, and distribution • Waste heat recovery and other industrial energy efficient technologies • Energy education and energy regulation • Scale-up, stability, and life-cycle analysis of energy technologies and improvement of existing energy-intensive processes • Theory and simulation in energy harvesting, conversion, and storage • Design, operation, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers • Energy efficiency improvement in process engineering (e.g., for biomass conversion and improved combustion) and electrical engineering (e.g., for power conversion and developing smart grids) • Thermo-electric/electrolysis/photo-electrolysis/fundamentals of PV • Emission control, CO2 capture, and conversion • Carbon sequestration techniques • CO2 and other greenhouse gas reduction metallurgy in ferrous (iron & steel making and forming), non-ferrous and reactive metals including critical rare-earth metals • Sustainability and life cycle assessment of energy systems • Thermodynamics and modelling for sustainable metallurgical processes • 'Smart cool materials' for urban heat island mitigation (such as cool roof infrared reflecting material, and low-temperature heat absorbers for use in air conditioner condensers - like 'endothermic materials') • Methodologies for reducing the cost of energy materials production • Circular economy and developing resource efficiency model for cutting down the transport from remote places • Materials extraction and processing steps for enhancing energy efficiencies in batteries, supercapacitors, and energy efficient cells • Foundational industry (metals-alloys, chemicals, refractories, cement) and energy economy and role of mineral extraction




Energy Technology 2017


Book Description

This collection focuses on energy efficient technologies including innovative ore beneficiation, smelting technologies, recycling and waste heat recovery. The volume also covers various technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions. Papers addressing renewable energy resources for metals and materials production, waste heat recovery and other industrial energy efficient technologies, new concepts or devices for energy generation and conversion, energy efficiency improvement in process engineering, sustainability and life cycle assessment of energy systems, as well as the thermodynamics and modeling for sustainable metallurgical processes are included. This volume also offers topics on CO2 sequestration and reduction in greenhouse gas emissions from process engineering, sustainable technologies in extractive metallurgy, as well as the materials processing and manufacturing industries with reduced energy consumption and CO2 emission. Contributions from all areas of non-nuclear and non-traditional energy sources, such as solar, wind, and biomass are also included in this volume.Papers from the following symposia are presented in the book:Energy TechnologiesAdvances in Environmental Technologies: Recycling and Sustainability Joint SessionDeriving Value from Challenging Waste Materials: Recycling and Sustainability Joint SessionSolar Cell Silicon




Light Metals 2021


Book Description

The Light Metals symposia at the TMS Annual Meeting & Exhibition present the most recent developments, discoveries, and practices in primary aluminum science and technology. The annual Light Metals volume has become the definitive reference in the field of aluminum production and related light metal technologies. The 2021 collection includes contributions from the following symposia: · Alumina and Bauxite · Aluminum Alloys, Processing, and Characterization · Aluminum Reduction Technology · Aluminum Reduction Technology Across the Decades: An LMD Symposium Honoring Alton T. Tabereaux, Halvor Kvande and Harald A. Øye · Cast Shop Technology · Electrode Technology for Aluminum Production




Energy Technology 2021


Book Description

Clean and sustainable energy is of paramount importance for industrial activities, economic development, environment, and welfare of civilians. As such, research on generation, storage, and application of clean energy is a central concern of both academia and industry. This collection addresses the pressing needs for sustainable technologies with reduced energy consumption and environmental pollutions and the development and application of alternative sustainable energy to maintain a green environment and efficient and long-lasting energy supply. Contributors represent both industry and academia and focus on new and efficient energy technologies including innovative ore beneficiation, smelting technologies, and recycling and waste heat recovery, as well as emerging novel energy solutions. The volume also covers a broad range of mature and new technological aspects of sustainable energy ecosystems, processes that improve energy efficiency, reduce thermal emissions, and reduce carbon dioxide and other greenhouse emissions.







Negative Emissions Technologies and Reliable Sequestration


Book Description

To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.




Energy Technology 2016


Book Description

Topics on CO2 sequestration and reduction in greenhouse gas emissions from process engineering and materials for clean energy are covered. Papers addressing sustainable technologies in extractive metallurgy, materials processing and manufacturing industries with reduced energy consumption and CO2 emission are also included, as well as industrial energy efficient technologies including innovative ore beneficiation, smelting technologies, recycling and waste heat recovery. The book also carries contributions from all areas of non-nuclear and non-traditional energy sources, including renewable energy sources such as solar, wind, biomass, etc. The book also emphasizes novel mineral beneficiation, processing, and extraction techniques leading to waste minimization of critical rare-earth materials used in energy systems (e.g., magnets, display and lighting devices). Papers from the following symposia are presented in the book: Energy Technologies and Carbon Dioxide Management High-temperature Systems for Energy Conversion and Storage




Progress in Life Cycle Assessment 2019


Book Description

This book covers the latest developments in life cycle assessment LCA both in terms of methodology and its application in various research areas. It includes methodological questions as well as case studies concerning energy and mobility, materials and engineering, sustainable construction and future technologies. With numerous research articles from leading German and Austrian research institutes, the book is a valuable source for professionals working in the field of sustainability assessment, researchers interested in the current state of LCA research, and advanced university students in various scientific and technical fields. Chapter “Life Cycle Assessment of a Hydrogen and Fuel Cell RoPax Ferry Prototype” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.