Energy Technology Handbook


Book Description

Coal technology; Gas technology; Petroleum technology; Chemical fuels technology; Nuclear energy technology; Solar energy technology; Geothermal energy technology; Hydropower technology; Power technology trends.




Handbook Of Renewable Energy Technology


Book Description

Effects of environmental, economic, social, political and technical factors have led to the rapid deployment of various sources of renewable energy-based power generation. The incorporation of these generation technologies have led to the development of a broad array of new methods and tools to integrate this new form of generation into the power system network. This book, arranged into six sections, highlights various renewable energy based generation technologies, and consists a series of papers written by experts in their respective fields of specialization.The Handbook of Renewable Energy Technology will be of great practical benefit to professionals, scientists and researchers in the relevant industries, and will be of interest to those of the general public wanting to know more about renewable energy technologies.




Energy and Power Generation Handbook


Book Description

Covers aspects of power generation from all known sources of energy that are in use around the globe. It contains power and energy sources such as solar, wind, hydro, tidal and wave power, bio energy including bio-mass and bio-fuels, waste-material, geothermal, fossil, petroleum, gas and nuclear. Experts were also invited to cover the role of nano-technology and the role of NASA in photovoltaic and wind energy in power generation.




Solar Energy Technology Handbook


Book Description

The handbook, for convenient use, is divided into eight main units: (1) The Solar Resource; (2) Solar Thermal Collectors; (3) Photovoltaics; (4) Bioconversion; (5) Wind Energy; (6) Solar Energy Storage Systems; (7) Applications of Solar Energy; (8) Non-technical Issues. In addition there are three Appendixes containing unit-conversion tables and useful solar data. It became obvious early in this project that if proper coverage were to be given each of these areas it would be necessary to divide the handbook into two volumes. The first six units constitute Part A, Engineering Fundamentals and the last two units constitute Part B, Applications, Systems Design, and Economics. These volumes have been prepared primarily as reference books, but it is felt that many of the sections will prove useful for practicing engineers, scientists and students.




Sustainable Fuel Technologies Handbook


Book Description

Sustainable Fuel Technologies Handbook provides a thorough thermodynamic analysis of new and current methods to give detailed insight into energy efficiency processes. This book includes the production methods, storage systems, and applications in various engines, as well as the safety related issues associated with all stages of production, storage, and utilization. With a comparison of cost implications and a techno-economic evaluation checking the feasibility of sustainable fuel use, this handbook is an invaluable reference source for researchers, professionals, and scientists working in the field of sustainability. The present power from solar, biomass, wind, hydrogen and other forms of renewable energy generated from sustainable sources can be harvested by various means and utilized in a variety of industries, supporting the need for clean fuels in modern society. However, there is still limited global availability and insufficient storage, which are required for efficient and effective harvesting of sustainable fuels. - Discusses new and innovative sustainable fuel technologies - Provides an integrated approach for modern tools, methodologies, and indicators in sustainable technologies - Evaluates advanced fuel technologies alongside other transformational options




Handbook Of Renewable Energy Technology & Systems


Book Description

Worldwide, the effects of global warming, pollution due to power generation from fossil fuels, and its depletion have led to the rapid deployment of renewable energy-based power generation. The leading renewable technologies are wind and photovoltaic (PV) systems. The incorporation of this generation of technologies has led to the development of a broad array of new methods and tools to integrate renewable generation into power system networks.The Handbook of Renewable Energy Technology & Systems comprises 22 chapters, arranged into four sections, which present a comprehensive analysis of various renewable energy-based distributed generation (DG) technologies. Aspects of renewable energy covered include wind and photovoltaic power systems and technology, micro-grids, power electronic applications, power quality, and the protection of renewable distributed generation.




Offshore Wind Energy Technology


Book Description

A COMPREHENSIVE REFERENCE TO THE MOST RECENT ADVANCEMENTS IN OFFSHORE WIND TECHNOLOGY Offshore Wind Energy Technology offers a reference based on the research material developed by the acclaimed Norwegian Research Centre for Offshore Wind Technology (NOWITECH) and material developed by the expert authors over the last 20 years. This comprehensive text covers critical topics such as wind energy conversion systems technology, control systems, grid connection and system integration, and novel structures including bottom-fixed and floating. The text also reviews the most current operation and maintenance strategies as well as technologies and design tools for novel offshore wind energy concepts. The text contains a wealth of mathematical derivations, tables, graphs, worked examples, and illustrative case studies. Authoritative and accessible, Offshore Wind Energy Technology: Contains coverage of electricity markets for offshore wind energy and then discusses the challenges posed by the cost and limited opportunities Discusses novel offshore wind turbine structures and floaters Features an analysis of the stochastic dynamics of offshore/marine structures Describes the logistics of planning, designing, building, and connecting an offshore wind farm Written for students and professionals in the field, Offshore Wind Energy Technology is a definitive resource that reviews all facets of offshore wind energy technology and grid connection.




Handbook on Bioethanol


Book Description

Bioethanol is a versatile transportation fuel and fuel additive that offers excellent performance and reduced air pollution compared to conventional fuels. Its production and use adds little, if any, net release of carbon dioxide to the atmosphere, dramatically reducing the potential for global climate change. Through a sustained research program and an emerging economic competitiveness, the technology for bioethanol production is poised for immediate widespread commercial applications. Written by engineers and scientists providing a technical focus, this handbook provides the up-to-date information needed by managers, engineers, and scientists to evaluate the technology, market, and economics of this fuel, while examining the development of production required to support its commercial use.




Concentrating Solar Power Technology


Book Description

Concentrating solar power (CSP) technology is poised to take its place as one of the major contributors to the future clean energy mix. Using straightforward manufacturing processes, CSP technology capitalises on conventional power generation cycles, whilst cost effectively matching supply and demand though the integration of thermal energy storage. Concentrating solar power technology provides a comprehensive review of this exciting technology, from the fundamental science to systems design, development and applications.Part one introduces fundamental principles of concentrating solar power systems. Site selection and feasibility analysis are discussed, alongside socio-economic and environmental assessments. Part two focuses on technologies including linear Fresnel reflector technology, parabolic-trough, central tower and parabolic dish concentrating solar power systems, and concentrating photovoltaic systems. Thermal energy storage, hybridization with fossil fuel power plants and the long-term market potential of CSP technology are explored. Part three goes on to discuss optimisation, improvements and applications. Topics discussed include absorber materials for solar thermal receivers, design optimisation through integrated techno-economic modelling, heliostat size optimisation, heat flux and temperature measurement technologies, concentrating solar heating and cooling for industrial processes, and solar fuels and industrial solar chemistry.With its distinguished editors and international team of expert contributors, Concentrating solar power technology is an essential guide for all those involved or interested in the design, production, development, optimisation and application of CSP technology, including renewable energy engineers and consultants, environmental governmental departments, solar thermal equipment manufacturers, researchers and academics. - Provides a comprehensive review of concentrating solar power (CSP) technology, from the fundamental science to systems design, development and applications - Reviews fundamental principles of concentrating solar power systems, including site selection and feasibility analysis and socio-economic and environmental assessments - Provides an overview of technologies such as linear Fresnel reflector technology, parabolic-trough, central tower and parabolic dish concentrating solar power systems, and concentrating photovoltaic systems




Science and Engineering of Hydrogen-Based Energy Technologies


Book Description

Science and Engineering of Hydrogen-Based Energy Technologies explores the generation of energy using hydrogen and hydrogen-rich fuels in fuel cells from the perspective of its integration into renewable energy systems using the most sound and current scientific knowledge. The book first examines the evolution of energy utilization and the role expected to be played by hydrogen energy technologies in the world's energy mix, not just for energy generation, but also for carbon capture, storage and utilization. It provides a general overview of the most common and promising types of fuel cells, such as PEMFCs, SOFCs and direct alcohol fuel cells. The co-production of chemical and electrolysis cells, as well as the available and future materials for fuel cells production are discussed. It then delves into the production of hydrogen from biomass, including waste materials, and from excess electricity produced by other renewable energy sources, such as solar, wind, hydro and geothermal. The main technological approaches to hydrogen storage are presented, along with several possible hydrogen energy engineering applications. Science and Engineering of Hydrogen-Based Energy Technologies's unique approach to hydrogen energy systems makes it useful for energy engineering researchers, professionals and graduate students in this field. Policy makers, energy planning and management professionals, and energy analysts can also benefit from the comprehensive overview that it provides. - Presents engineering fundamentals, commercially deployed technologies, up-and-coming developments and applications through a systemic approach - Explores the integration of hydrogen technologies in renewable energy systems, including solar, wind, bioenergy and ocean energy - Covers engineering standards, guidelines and regulations, as well as policy and social aspects for large-scale deployment of these technologies