Energy Transition Metals


Book Description

The energy transition requires substantial amounts of metals such as copper, nickel, cobalt and lithium. Are these metals a key bottleneck? We identify metal-specific demand shocks, estimate supply elasticities and pin down the price impact of the energy transition in a structural scenario analysis. Metal prices would reach historical peaks for an unprecedented, sustained period in a net-zero emissions scenario. The total value of metals production would rise more than four-fold for the period 2021 to 2040, rivaling the total value of crude oil production. Metals are a potentially important input into integrated assessments models of climate change.




The Material Basis of Energy Transitions


Book Description

The Material Basis of Energy Transitions explores the intersection between critical raw material provision and the energy system. Chapters draw on examples and case studies involving energy technologies (e.g., electric power, transport) and raw material provision (e.g., mining, recycling), and consider these in their regional and global contexts. The book critically discusses issues such as the notion of criticality in the context of a circular economy, approaches for estimating the need for raw materials, certification schemes for raw materials, the role of consumers, and the impact of renewable energy development on resource conflicts. Each chapter deals with a specific issue that characterizes the interdependency between critical raw materials and renewable energies by examining case studies from a particular conceptual perspective. The book is a resource for students and researchers from the social sciences, natural sciences, and engineering, as well as interdisciplinary scholars interested in the field of renewable energies, the circular economy, recycling, transport, and mining. The book is also of interest to policymakers in the fields of renewable energy, recycling, and mining, professionals from the energy and resource industries, as well as energy experts and consultants looking for an interdisciplinary assessment of critical materials. Provides a comprehensive overview of key issues related to the nexus between renewable energy and critical raw materials Explores interdisciplinary perspectives from the natural sciences, engineering, and social sciences Discusses critical strategies to address the nexus from a practitioner's perspective




The Geopolitics of the Global Energy Transition


Book Description

The world is currently undergoing an historic energy transition, driven by increasingly stringent decarbonisation policies and rapid advances in low-carbon technologies. The large-scale shift to low-carbon energy is disrupting the global energy system, impacting whole economies, and changing the political dynamics within and between countries. This open access book, written by leading energy scholars, examines the economic and geopolitical implications of the global energy transition, from both regional and thematic perspectives. The first part of the book addresses the geopolitical implications in the world’s main energy-producing and energy-consuming regions, while the second presents in-depth case studies on selected issues, ranging from the geopolitics of renewable energy, to the mineral foundations of the global energy transformation, to governance issues in connection with the changing global energy order. Given its scope, the book will appeal to researchers in energy, climate change and international relations, as well as to professionals working in the energy industry.




Energy Transitions


Book Description

This bold and controversial argument shows why energy transitions are inherently complex and prolonged affairs, and how ignoring this fact raises unrealistic expectations that the United States and other global economies can be weaned quickly from a primary dependency on fossil fuels. Energy transitions are fundamental processes behind the evolution of human societies: they both drive and are driven by technical, economic, and social changes. In a bold and provocative argument, Energy Transitions: History, Requirements, Prospects describes the history of modern society's dependence on fossil fuels and the prospects for the transition to a nonfossil world. Vaclav Smil, who has published more on various aspects of energy than any working scientist, makes it clear that this transition will not be accomplished easily, and that it cannot be accomplished within the timetables established by the Obama administration. The book begins with a survey of the basic properties of modern energy systems. It then offers detailed explanations of universal patterns of energy transitions, the peculiarities of changing energy use in the world's leading economies, and the coming shifts from fossil fuels to renewable conversions. Specific cases of these transitions are analyzed for eight of the world's leading energy consumers. The author closes with perspectives on the nature and pace of the coming energy transition to renewable conversions.




Achieving the Paris Climate Agreement Goals


Book Description

This open access book presents detailed pathways to achieve 100% renewable energy by 2050, globally and across ten geographical regions. Based on state-of-the-art scenario modelling, it provides the vital missing link between renewable energy targets and the measures needed to achieve them. Bringing together the latest research in climate science, renewable energy technology, employment and resource impacts, the book breaks new ground by covering all the elements essential to achieving the ambitious climate mitigation targets set out in the Paris Climate Agreement. For example, sectoral implementation pathways, with special emphasis on differences between developed and developing countries and regional conditions, provide tools to implement the scenarios globally and domestically. Non-energy greenhouse gas mitigation scenarios define a sustainable pathway for land-use change and the agricultural sector. Furthermore, results of the impact of the scenarios on employment and mineral and resource requirements provide vital insight on economic and resource management implications. The book clearly demonstrates that the goals of the Paris Agreement are achievable and feasible with current technology and are beneficial in economic and employment terms. It is essential reading for anyone with responsibility for implementing renewable energy or climate targets internationally or domestically, including climate policy negotiators, policy-makers at all levels of government, businesses with renewable energy commitments, researchers and the renewable energy industry.




The Connectedness of Energy Transition Metals


Book Description

We assess the degree of connectedness among 16 metals that are critical for the production of clean energy technologies. These commodities are the constituents of the Energy Transition Metals (ETMs) price index maintained by the International Monetary Fund and comprise base, precious, and minor metals. We rely on Vector Autoregressive models and generalized forecast error variance decomposition to quantify spillovers among ETMs returns and volatilities. By calculating both static and dynamic measures of connectedness, we gain insight into the patterns of shock transmission between ETMs. Our static analysis reveals that base and precious metals are net shock transmitters, while minor and most battery metals are net receivers. By splitting the analysis into three groups, we find that almost half of the connectedness originates within each group, whereas the other half is due to cross-group spillovers. Moreover, we find that the system-wide connectedness of returns is positively correlated with proxies of economic activity, whereas volatility connectedness seems to be more related to global economic policy uncertainty.




The Rare Metals War


Book Description

The resources race is on. Powering our digital lives and green technologies are some of the Earth’s most precious metals — but they are running out. And what will happen when they do? The green-tech revolution has been lauded as the silver bullet to a new world. One that is at last free of oil, pollution, shortages, and cross-border tensions. Drawing on six years of research across a dozen countries, this book cuts across conventional green thinking to probe the hidden, dark side of green technology. By breaking free of fossil fuels, we are in fact setting ourselves up for a new dependence — on rare metals such as cobalt, gold, and palladium. They are essential to electric vehicles, wind turbines, solar panels, our smartphones, computers, tablets, and other everyday connected objects. China has captured the lion’s share of the rare metals industry, but consumers know very little about how they are mined and traded, or their environmental, economic, and geopolitical costs. The Rare Metals War is a vital exposé of the ticking time-bomb that lies beneath our new technological order. It uncovers the reality of our lavish and ambitious environmental quest that involves risks as formidable as those it seeks to resolve.




Critical Materials Strategy


Book Description

This report examines the role of rare earth metals and other materials in the clean energy economy. It was prepared by the U.S. Department of Energy (DoE) based on data collected and research performed during 2010. In the report, DoE describes plans to: (1) develop its first integrated research agenda addressing critical materials, building on three technical workshops convened by the DoE during November and December 2010; (2) strengthen its capacity for information-gathering on this topic; and (3) work closely with international partners, including Japan and Europe, to reduce vulnerability to supply disruptions and address critical material needs. Charts and tables. This is a print on demand report.




Handbook of the Band Structure of Elemental Solids


Book Description

This handbook presents electronic structure data and tabulations of Slater-Koster parameters for the whole periodic table. This second edition presents data sets for all elements up to Z = 112, Copernicium, whereas the first edition contained only 53 elements. In this new edition, results are given for the equation of state of the elements together with the parameters of a Birch fit, so that the reader can regenerate the results and derive additional information, such as Pressure-Volume relations and variation of Bulk Modulus with Pressure. For each element, in addition to the equation of state, the energy bands, densities of states and a set of tight-binding parameters is provided. For a majority of elements, the tight-binding parameters are presented for both a two- and three-center approximation. For the hcp structure, new three-center tight-binding results are given. Other new material in this edition include: energy bands and densities of states of all rare-earth metals, a discussion of the McMillan-Gaspari-Gyorffy theories and a tabulation of the electron-ion interaction matrix elements. The evaluation of the Stoner criterion for ferromagnetism is examined and results are tabulated. This edition also contains two new appendices discussing the effects of spin-orbit interaction and a modified version of Harrison's tight-binding theory for metals which puts the theory on a quantitative basis.




Raw Materials for Future Energy Supply


Book Description

This is the first book that analyses the future raw materials supply from the demand side of a society that chiefly relies on renewable energies, which is of great significance for us all. It addresses primary and secondary resources and substitution, not only from technical but also socioeconomic and ethical points of view. The “Energiewende” (Energy Transition) will change our consumption of natural resources significantly. When in future our energy requirements will be covered mostly by wind, solar power and biomass, we will need less coal, oil and natural gas. However, the consumption of minerals, especially metallic resources, will increase to build wind generators, solar panels or energy storage facilities. Besides e.g. copper, nickel or cobalt, rare earth elements and other high-tech elements will be increasingly used. With regard to primary metals, Germany is 100 % import dependent; only secondary material is produced within Germany. Though sufficient geological primary resources exist worldwide, their availability on the market is crucial. The future supply of the market is dependent on the development of prices, the transparency of the market and the question of social and ethical standards in the raw materials industry, as well as the social license to operate, which especially applies to mining. The book offers a valuable resource for everyone interested in the future raw material supply of our way of life, which will involve more and more renewable energies.