Engineering Analysis in Applied Mechanics


Book Description

This text surveys the mathematical foundations of applied mechanics. The sections on engineering mathematics covers simultaneous algebraic and differential equations, matrix algebra, the theory of optimization and the calculus of variations. Considerable attention is also paid to engineering applications in theoretical thermodynamics, strength of materials ang Lagrangian-Hamiltonian dynamics. The unifying themes of the text are the mathematical foundations, work-energy principles and the Legendre transform. The only prerequisite is the background in mathematics and physics typical of the advanced-undergraduate in engineering.




Convex Models of Uncertainty in Applied Mechanics


Book Description

Recognition of the need to introduce the ideas of uncertainty in a wide variety of scientific fields today reflects in part some of the profound changes in science and engineering over the last decades. Nobody questions the ever-present need for a solid foundation in applied mechanics. Neither does anyone question nowadays the fundamental necessity to recognize that uncertainty exists, to learn to evaluate it rationally, and to incorporate it into design.This volume provides a timely and stimulating overview of the analysis of uncertainty in applied mechanics. It is not just one more rendition of the traditional treatment of the subject, nor is it intended to supplement existing structural engineering books. Its aim is to fill a gap in the existing professional literature by concentrating on the non-probabilistic model of uncertainty. It provides an alternative avenue for the analysis of uncertainty when only a limited amount of information is available. The first chapter briefly reviews probabilistic methods and discusses the sensitivity of the probability of failure to uncertain knowledge of the system. Chapter two discusses the mathematical background of convex modelling. In the remainder of the book, convex modelling is applied to various linear and nonlinear problems. Uncertain phenomena are represented throughout the book by convex sets, and this approach is referred to as convex modelling.This book is intended to inspire researchers in their goal towards further growth and development in this field.




Applied Mechanics of Solids


Book Description

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o




Rational and Applied Mechanics


Book Description

Available for the first time in English, this two-volume course on theoretical and applied mechanics has been honed over decades by leading scientists and teachers, and is a primary teaching resource for engineering and maths students at St. Petersburg University. The course addresses classical branches of theoretical mechanics (Vol. 1), along with a wide range of advanced topics, special problems and applications (Vol. 2). This first volume of the textbook contains the parts “Kinematics” and “Dynamics”. The part “Kinematics” presents in detail the theory of curvilinear coordinates which is actively used in the part “Dynamics”, in particular, in the theory of constrained motion and variational principles in mechanics. For describing the motion of a system of particles, the notion of a Hertz representative point is used, and the notion of a tangent space is applied to investigate the motion of arbitrary mechanical systems. In the final chapters Hamilton-Jacobi theory is applied​ for the integration of equations of motion, and the elements of special relativity theory are presented. This textbook is aimed at students in mathematics and mechanics and at post-graduates and researchers in analytical mechanics.




Engineering Analysis in Applied Mechanics


Book Description

Engineering Analysis in Applied Mechanics is composed of two basic parts: the mathematical foundations in Chapters 1 through 3 and the final three chapters on specialized topics in engineering physics. Chapters 5 and 6 are devoted to solid mechanics and dynamics. The text surveys the mathematical foundations of applied mechanics. The sections on engineering mathematics includes treatments of simultaneous algebraic and differential equations, matrix algebra, the theory of optimization and the calculus of variations. The author pays considerable attention to engineering applications in theoretical thermodynamics, strength of materials and Langranian-Hamiltonian dynamics. This text is recommended for advanced undergraduate and graduate students and a familiarity with Matlab or Mathcad is suggested.




Applied Mechanics and Civil Engineering VI


Book Description

Applied Mechanics and Civil Engineering VI includes the contributions to the 6th International Conference on Applied Mechanics and Civil Engineering (AMCE 2016, Hong kong, China, 30-31 December 2016), and showcases the challenging developments in the areas of applied mechanics, civil engineering and associated engineering practice. The book covers a wide variety of topics: - Applied mechanics and its applications in civil engineering; - Bridge engineering; - Underground engineering; - Structural safety and reliability; - Reinforced concrete (RC) structures; - Rock mechanics and rock engineering; - Geotechnical in-situ testing & monitoring; - New construction materials and applications; - Computational mechanics; - Natural hazards and risk, and - Water and hydraulic engineering. Applied Mechanics and Civil Engineering VI will appeal to professionals and academics involved in the above mentioned areas, and it is expected that the book will stimulate new ideas, methods and applications in ongoing civil engineering advances.




Continuum Mechanics for Engineers


Book Description

Continuum Mechanics for Engineers, Third Edition provides engineering students with a complete, concise, and accessible introduction to advanced engineering mechanics. The impetus for this latest edition was the need to suitably combine the introduction of continuum mechanics, linear and nonlinear elasticity, and viscoelasticity for a graduate-leve




Applied Mechanics


Book Description

Applied Mechanics: Made Simple presents the fundamental principles of Mechanics and their application to engineering problems. The book describes the principles of Statics and the principles of Dynamics. The text also discusses motion, kinematics, forces, and laws governing the combination of two or more forces, as well as the link between force and motion (kinetics). The concepts of work, energy, power, momentum, and stress and strain, as well as the applications of these concepts (the bending of beams and the twisting of shafts) are also considered. The book concludes by tackling the study of forces applied to fluids. First year engineering students will find the book invaluable.




Applied Mechanics of Polymers


Book Description

Applied Mechanics of Polymers: Properties, Processing, and Behavior provides readers with an overview of the properties, mechanical behaviors and modeling techniques for accurately predicting the behaviors of polymeric materials. The book starts with an introduction to polymers, covering their history, chemistry, physics, and various types and applications. In addition, it covers the general properties of polymers and the common processing and manufacturing processes involved with them. Subsequent chapters delve into specific mechanical behaviors of polymers such as linear elasticity, hyperelasticity, creep, viscoelasticity, failure, and fracture. The book concludes with chapters discussing electroactive polymers, hydrogels, and the mechanical characterization of polymers. This is a useful reference text that will benefit graduate students, postdocs, researchers, and engineers in the mechanics of materials, polymer science, mechanical engineering and material science. Additional resources related to the book can be found at polymersmechanics.com. - Provides examples of real-world applications that demonstrate the use of models in designing polymer-based components - Includes access to a companion site from where readers can download FEA and MATLAB code, FEA simulation files, videos and other supplemental material - Features end-of-chapter summaries with design and analysis guidelines, practice problem sets based on real-life situations, and both analytical and computational examples to bridge academic and industrial applications




High Sensitivity Moiré


Book Description

A description of both the theory and practice of physical measurements that use high-sensitivity moiré - principally moiré interferometry. The focus here is on the mechanics and micromechanics of materials and structural elements and the book includes new studies published for the first time. Diverse fields are addressed: advanced composite materials, thermal stresses, electronic packaging, fracture, metallurgy, time-dependence, strain gage calibration. All the methods can be applied for whole-field measurements on nearly and solid bodies. This reader-friendly book will serve engineers and scientists who are concerned with measurements of real phenomena, while also stimulating students to pursue the treasures of experimental analysis.