Engineering Optimization


Book Description

An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.




Advances and Trends in Optimization with Engineering Applications


Book Description

Optimization is of critical importance in engineering. Engineers constantly strive for the best possible solutions, the most economical use of limited resources, and the greatest efficiency. As system complexity increases, these goals mandate the use of state-of-the-art optimization techniques. In recent years, the theory and methodology of optimization have seen revolutionary improvements. Moreover, the exponential growth in computational power, along with the availability of multicore computing with virtually unlimited memory and storage capacity, has fundamentally changed what engineers can do to optimize their designs. This is a two-way process: engineers benefit from developments in optimization methodology, and challenging new classes of optimization problems arise from novel engineering applications. Advances and Trends in Optimization with Engineering Applications reviews 10 major areas of optimization and related engineering applications, providing a broad summary of state-of-the-art optimization techniques most important to engineering practice. Each part provides a clear overview of a specific area and discusses a range of real-world problems. The book provides a solid foundation for engineers and mathematical optimizers alike who want to understand the importance of optimization methods to engineering and the capabilities of these methods.




Applied Optimization


Book Description

The starting point in the formulation of any numerical problem is to take an intuitive idea about the problem in question and to translate it into precise mathematical language. This book provides step-by-step descriptions of how to formulate numerical problems and develops techniques for solving them. A number of engineering case studies motivate the development of efficient algorithms that involve, in some cases, transformation of the problem from its initial formulation into a more tractable form. Five general problem classes are considered: linear systems of equations, non-linear systems of equations, unconstrained optimization, equality-constrained optimization and inequality-constrained optimization. The book contains many worked examples and homework exercises and is suitable for students of engineering or operations research taking courses in optimization. Supplementary material including solutions, lecture slides and appendices are available online at www.cambridge.org/9780521855648.




Practical Optimization


Book Description

Practical Optimization: Algorithms and Engineering Applications is a hands-on treatment of the subject of optimization. A comprehensive set of problems and exercises makes the book suitable for use in one or two semesters of a first-year graduate course or an advanced undergraduate course. Each half of the book contains a full semester’s worth of complementary yet stand-alone material. The practical orientation of the topics chosen and a wealth of useful examples also make the book suitable for practitioners in the field.




Optimization in Engineering


Book Description

This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering and operations research fields.




Engineering and Applied Sciences Optimization


Book Description

The chapters which appear in this volume are selected studies presented at the First International Conference on Engineering and Applied Sciences Optimization (OPT-i), Kos, Greece, 4-6 June 2014 and works written by friends, former colleagues and students of the late Professor M. G. Karlaftis; all in the area of optimization that he loved and published so much in himself. The subject areas represented here range from structural optimization, logistics, transportation, traffic and telecommunication networks to operational research, metaheuristics, multidisciplinary and multiphysics design optimization, etc. This volume is dedicated to the life and the memory of Professor Matthew G. Karlaftis, who passed away a few hours before he was to give the opening speech at OPT-i. All contributions reflect the warmth and genuine friendship which he enjoyed from his associates and show how much his scientific contribution has been appreciated. He will be greatly missed and it is hoped that this volume will be received as a suitable memorial to his life and achievements.




Numerical Optimization in Engineering and Sciences


Book Description

This book presents select peer-reviewed papers presented at the International Conference on Numerical Optimization in Engineering and Sciences (NOIEAS) 2019. The book covers a wide variety of numerical optimization techniques across all major engineering disciplines like mechanical, manufacturing, civil, electrical, chemical, computer, and electronics engineering. The major focus is on innovative ideas, current methods and latest results involving advanced optimization techniques. The contents provide a good balance between numerical models and analytical results obtained for different engineering problems and challenges. This book will be useful for students, researchers, and professionals interested in engineering optimization techniques.




Introduction to Applied Optimization


Book Description

This text presents a multi-disciplined view of optimization, providing students and researchers with a thorough examination of algorithms, methods, and tools from diverse areas of optimization without introducing excessive theoretical detail. This second edition includes additional topics, including global optimization and a real-world case study using important concepts from each chapter. Introduction to Applied Optimization is intended for advanced undergraduate and graduate students and will benefit scientists from diverse areas, including engineers.




Modern Optimization Methods for Science, Engineering and Technology


Book Description

Achieving a better solution or improving the performance of existing system design is an ongoing a process for which scientists, engineers, mathematicians and researchers have been striving for many years. Ever increasingly practical and robust methods have been developed, and every new generation of computers with their increased power and speed allows for the development and wider application of new types of solutions. This book defines the fundamentals, background and theoretical concepts of optimization principles in a comprehensive manner along with their potential applications and implementation strategies. It encompasses linear programming, multivariable methods for risk assessment, nonlinear methods, ant colony optimization, particle swarm optimization, multi-criterion and topology optimization, learning classifier, case studies on six sigma, performance measures and evaluation, multi-objective optimization problems, machine learning approaches, genetic algorithms and quality of service optimizations. The book will be very useful for wide spectrum of target readers including students and researchers in academia and industry.




Fixed-Point Algorithms for Inverse Problems in Science and Engineering


Book Description

"Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.