Engineering Applications of Correlation and Spectral Analysis


Book Description

Expanded to cover more advanced applications where statistical properties of data can be nonstationary and the physical systems nonlinear as opposed to only linear. Stresses the practical use and interpretation of analyzed data to solve problems. Special attention is given to bias and random errors involved in desired estimates and the proper interpretation of results from specific applications. Includes numerous case studies concerned with dynamic problems which can occur in a variety of fields.




Engineering Applications of Correlation and Spectral Analysis


Book Description

Introduction and background; Probability functions and amplitude measures; Correlation and spectral density functions; Single input/single output relationships; System identification and response; Propagation path identification; Single input/multiple output problems; Multiple input/output relationships; Energy source identification; Procedures for solving multiple input/output problems; Statistical errors in measurements.




Inter-area Oscillations in Power Systems


Book Description

The study of complex dynamic processes governed by nonlinear and nonstationary characteristics is a problem of great importance in the analysis and control of power system oscillatory behavior. Power system dynamic processes are highly random, nonlinear to some extent, and intrinsically nonstationary even over short time intervals as in the case of severe transient oscillations in which switching events and control actions interact in a complex manner. Phenomena observed in power system oscillatory dynamics are diverse and complex. Measured ambient data are known to exhibit noisy, nonstationary fluctuations resulting primarily from small magnitude, random changes in load, driven by low-scale motions or nonlinear trends originating from slow control actions or changes in operating conditions. Forced oscillations resulting from major cascading events, on the other hand, may contain motions with a broad range of scales and can be highly nonlinear and time-varying. Prediction of temporal dynamics, with the ultimate application to real-time system monitoring, protection and control, remains a major research challenge due to the complexity of the driving dynamic and control processes operating on various temporal scales that can become dynamically involved. An understanding of system dynamics is critical for reliable inference of the underlying mechanisms in the observed oscillations and is needed for the development of effective wide-area measurement and control systems, and for improved operational reliability.




Introductory Signal Processing


Book Description

A valuable introduction to the fundamentals of continuous and discrete time signal processing, this book is intended for the reader with little or no background in this subject. The emphasis is on development from basic principles. With this book the reader can become knowledgeable about both the theoretical and practical aspects of digital signal processing.Some special features of this book are: (1) gradual and step-by-step development of the mathematics for signal processing, (2) numerous examples and homework problems, (3) evolutionary development of Fourier series, Discrete Fourier Transform, Fourier Transform, Laplace Transform, and Z-Transform, (4) emphasis on the relationship between continuous and discrete time signal processing, (5) many examples of using the computer for applying the theory, (6) computer based assignments to gain practical insight, (7) a set of computer programs to aid the reader in applying the theory.




Automatic Autocorrelation and Spectral Analysis


Book Description

Spectral analysis requires subjective decisions which influence the final estimate and mean that different analysts can obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that is only acceptable if it is close to the best attainable accuracy for most types of stationary data. This book describes a method which fulfils the above near-optimal-solution criterion, taking advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data.




Digital Signal Processing and Spectral Analysis for Scientists


Book Description

This book covers the basics of processing and spectral analysis of monovariate discrete-time signals. The approach is practical, the aim being to acquaint the reader with the indications for and drawbacks of the various methods and to highlight possible misuses. The book is rich in original ideas, visualized in new and illuminating ways, and is structured so that parts can be skipped without loss of continuity. Many examples are included, based on synthetic data and real measurements from the fields of physics, biology, medicine, macroeconomics etc., and a complete set of MATLAB exercises requiring no previous experience of programming is provided. Prior advanced mathematical skills are not needed in order to understand the contents: a good command of basic mathematical analysis is sufficient. Where more advanced mathematical tools are necessary, they are included in an Appendix and presented in an easy-to-follow way. With this book, digital signal processing leaves the domain of engineering to address the needs of scientists and scholars in traditionally less quantitative disciplines, now facing increasing amounts of data.




Introduction to Applied Statistical Signal Analysis


Book Description

Introduction to Applied Statistical Signal Analysis, Third Edition, is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech. Topics presented include mathematical bases, requirements for estimation, and detailed quantitative examples for implementing techniques for classical signal analysis. This book includes over one hundred worked problems and real world applications. Many of the examples and exercises use measured signals, most of which are from the biomedical domain. The presentation style is designed for the upper level undergraduate or graduate student who needs a theoretical introduction to the basic principles of statistical modeling and the knowledge to implement them practically. Includes over one hundred worked problems and real world applications. Many of the examples and exercises in the book use measured signals, many from the biomedical domain.










Virtual Experiments in Mechanical Vibrations


Book Description

VIRTUAL EXPERIMENTS in MECHANICAL VIBRATIONS The first book of its kind to explain fundamental concepts in both vibrations and signal processing using MATLAB virtual experiments Students and young engineers with a strong grounding in engineering theory often lack the practical skills and knowledge required to carry out experimental work in the laboratory. Fundamental and time-consuming errors can be avoided with the appropriate training and a solid understanding of basic concepts in vibrations and/or signal processing, which are critical to testing new designs. Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing is designed for readers with limited knowledge of vibrations and signal processing. The intention is to help them relate vibration theory to measurements carried out in the laboratory. With a hands-on approach that emphasizes physics rather than mathematics, this practical resource explains fundamental concepts in vibrations and signal processing. It uses the concept of a virtual experiment together with MATLAB to show how the dynamic properties of vibration isolators can be determined, how vibration absorbers can be designed, and how they perform on distributed parameter structures. Readers will find that this text: Allows the concepts of experimental work to be discussed and simulated in the classroom using a physics-based approach Presents computational virtual experiments using MATLAB examples to determine the dynamic behaviour of several common dynamic systems Explains the rationale of virtual experimentation and describes typical vibration testing setups Introduces the signal processing tools needed to determine the frequency response of a system from input and output data Includes access to a companion website containing MATLAB code Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing is a must-have resource for researchers, mechanical engineers, and advanced undergraduate and graduate students who are new to the subjects of vibrations, signal processing, and vibration testing. It is also an invaluable tool for universities where the possibilities of doing experimental work are limited.