Engineering Dynamics 2.0


Book Description

This book presents a new approach to learning the dynamics of particles and rigid bodies at an intermediate to advanced level. There are three distinguishing features of this approach. First, the primary emphasis is to obtain the equations of motion of dynamical systems and to solve them numerically. As a consequence, most of the analytical exercises and homework found in traditional dynamics texts written at this level are replaced by MATLAB®-based simulations. Second, extensive use is made of matrices. Matrices are essential to define the important role that constraints have on the behavior of dynamical systems. Matrices are also key elements in many of the software tools that engineers use to solve more complex and practical dynamics problems, such as in the multi-body codes used for analyzing mechanical, aerospace, and biomechanics systems. The third and feature is the use of a combination of Newton-Euler and Lagrangian (analytical mechanics) treatments for solving dynamics problems. Rather than discussing these two treatments separately, Engineering Dynamics 2.0 uses a geometrical approach that ties these two treatments together, leading to a more transparent description of difficult concepts such as "virtual" displacements. Some important highlights of the book include: Extensive discussion of the role of constraints in formulating and solving dynamics problems. Implementation of a highly unified approach to dynamics in a simple context suitable for a second-level course. Descriptions of non-linear phenomena such as parametric resonances and chaotic behavior. A treatment of both dynamic and static stability. Overviews of the numerical methods (ordinary differential equation solvers, Newton-Raphson method) needed to solve dynamics problems. An introduction to the dynamics of deformable bodies and the use of finite difference and finite element methods. Engineering Dynamics 2.0 provides a unique, modern treatment of dynamics problems that is directly useful in advanced engineering applications. It is a valuable resource for undergraduate and graduate students and for practicing engineers.




Advanced Engineering Dynamics


Book Description

'Advanced Engineering Dynamics' bridges the gap between elementary dynamics and advanced specialist applications in engineering.It begins with a reappraisal of Newtonian principles before expanding into analytical dynamics typified by the methods of Lagrange and by Hamilton's Principle and rigid body dynamics. Four distinct vehicle types (satellites, rockets, aircraft and cars) are examined highlighting different aspects of dynamics in each case. Emphasis is placed on impact and one dimensional wave propagation before extending the study into three dimensions. Robotics is then looked at in detail, forging a link between conventional dynamics and the highly specialised and distinctive approach used in robotics. The text finishes with an excursion into the Special Theory of Relativity mainly to define the boundaries of Newtonian Dynamics but also to re-appraise the fundamental definitions. Through its examination of specialist applications highlighting the many different aspects of dynamics this text provides an excellent insight into advanced systems without restricting itself to a particular discipline. The result is essential reading for all those requiring a general understanding of the more advanced aspects of engineering dynamics.




Engineering Mechanics 2: Strength of Materials


Book Description

This book follows the classical division of engineering mechanics as taught at universities in Germany and is devoted to strength of materials, i.e. the determination of stresses and of deformations in elastic bodies. The aim of this book is to provide students with a clear introduction and to enable them to formulate and solve engineering problems in this field. For this purpose, the book provides a number of examples. This book is intended for university students of mechanical engineering, civil engineering, mechanics, but also all other courses in which the contents of this book play a role. The Contents Introduction to linear elasticity – Plane stress state – Bars – Beams – Beam deflections – Shear stresses in beams – Torsion – Energy methods – Buckling of bars




System Dynamics for Engineering Students


Book Description

Engineering system dynamics focuses on deriving mathematical models based on simplified physical representations of actual systems, such as mechanical, electrical, fluid, or thermal, and on solving these models for analysis or design purposes. System Dynamics for Engineering Students: Concepts and Applications features a classical approach to system dynamics and is designed to be utilized as a one-semester system dynamics text for upper-level undergraduate students with emphasis on mechanical, aerospace, or electrical engineering. It is the first system dynamics textbook to include examples from compliant (flexible) mechanisms and micro/nano electromechanical systems (MEMS/NEMS). This new second edition has been updated to provide more balance between analytical and computational approaches; introduces additional in-text coverage of Controls; and includes numerous fully solved examples and exercises. - Features a more balanced treatment of mechanical, electrical, fluid, and thermal systems than other texts - Introduces examples from compliant (flexible) mechanisms and MEMS/NEMS - Includes a chapter on coupled-field systems - Incorporates MATLAB® and Simulink® computational software tools throughout the book - Supplements the text with extensive instructor support available online: instructor's solution manual, image bank, and PowerPoint lecture slides NEW FOR THE SECOND EDITION - Provides more balance between analytical and computational approaches, including integration of Lagrangian equations as another modelling technique of dynamic systems - Includes additional in-text coverage of Controls, to meet the needs of schools that cover both controls and system dynamics in the course - Features a broader range of applications, including additional applications in pneumatic and hydraulic systems, and new applications in aerospace, automotive, and bioengineering systems, making the book even more appealing to mechanical engineers - Updates include new and revised examples and end-of-chapter exercises with a wider variety of engineering applications




Catalogue for the Academic Year


Book Description




Engineering Dynamics


Book Description

A modern vector oriented treatment of classical dynamics and its application to engineering problems.




Engineering Mechanics


Book Description

Dynamics can be a major frustration for those students who don’t relate to the logic behind the material -- and this includes many of them! Engineering Mechanics: Dynamics meets their needs by combining rigor with user friendliness. The presentation in this text is very personalized, giving students the sense that they are having a one-on-one discussion with the authors. This minimizes the air of mystery that a more austere presentation can engender, and aids immensely in the students’ ability to retain and apply the material. The authors do not skimp on rigor but at the same time work tirelessly to make the material accessible and, as far as possible, fun to learn.




Engineering Mechanics Statics And Dynami


Book Description

Explains the fundamental concepts and principles underlying the subject, illustrates the application of numerical methods to solve engineering problems with mathematical models, and introduces students to the use of computer applications to solve problems. A continuous step-by-step build up of the subject makes the book very student-friendly. All topics and sequentially coherent subtopics are carefully organized and explained distinctly within each chapter. An abundance of solved examples is provided to illustrate all phases of the topic under consideration. All chapters include several spreadsheet problems for modeling of physical phenomena, which enable the student to obtain graphical representations of physical quantities and perform numerical analysis of problems without recourse to a high-level computer language. Adequately equipped with numerous solved problems and exercises, this book provides sufficient material for a two-semester course. The book is essentially designed for all engineering students. It would also serve as a ready reference for practicing engineers and for those preparing for competitive examinations. It includes previous years' question papers and their solutions.




Catalogue


Book Description




Selected Papers on Noise and Stochastic Processes


Book Description

These six classic papers on stochastic process were selected to meet the needs of professionals and advanced undergraduates and graduate students in physics, applied mathematics, and engineering. Contents include: "Stochastic Problems in Physics and Astronomy" by S. Chandrasekhar from Reviews of Modern Physics, Vol. 15, No. 1 "On the Theory of Brownian Motion" by G. E. Uhlenbeck and L. S. Ornstein from Physical Review, Vol. 36, No. 3 "On the Theory of the Brownian Motion II" by Ming Chen Wang and G. E. Uhlenbeck from Reviews of Modern Physics, Vol. 17, Nos. 2 and 3 "Mathematical Analysis of Random Noise" by S. O. Rice from Bell System Technical Journal, Vols. 23 and 24 "Random Walk and the Theory of Brownian Motion" by Mark Kac from American Mathematical Monthly, Vol. 54, No. 7 "The Brownian Movement and Stochastic Equations" by J. L. Doob from Annals of Mathematics, Vol. 43, No. 2