Engineering Education for the Next Generation: A Nature-Inspired Approach


Book Description

Guide your students through the fascinating world of engineering, and how to draw inspiration from Nature’s genius to create, make, and innovate a better human-built world. Studded with more than 150 illustrations of natural phenomena and engineering concepts, this fascinating and practical book clearly demonstrates how engineering design is broadly relevant for all students, not just those who may become scientists or engineers. Mr. Stier describes clever, engaging activities for students at every grade level to grasp engineering concepts by exploring the everyday design genius of the natural world around us. Students will love learning about structural engineering while standing on eggs; investigating concepts in sustainable design by manufacturing cement out of car exhaust; and coming to understand how ant behavior has revolutionized the way computer programs, robots, movies, and video games are designed today. You will come away with an understanding of engineering and Nature unlike any you’ve had before, while taking your ability to engage students to a whole new level. Engineering Education for the Next Generation is a wonderful introduction to the topic for any teacher who wants to understand more about engineering design in particular, its relation to the larger subjects of STEM/STEAM, and how to engage students from all backgrounds in a way that meaningfully transforms their outlook on the world and their own creativity in a lifelong way. · Fun to read, comprehensive exploration of cutting-edge approaches to K-12 engineering education · Detailed descriptions and explanations to help teachers create activities and lessons · An emphasis on engaging students with broad and diverse interests and backgrounds · Insights from a leading, award-winning K-12 engineering curriculum that has reached thousands of teachers and students in the U.S. and beyond · Additional support website (www.LearningWithNature.org) providing more background, videos, curricula, slide decks, and other supplemental materials




Engineering a Better Future


Book Description

This open access book examines how the social sciences can be integrated into the praxis of engineering and science, presenting unique perspectives on the interplay between engineering and social science. Motivated by the report by the Commission on Humanities and Social Sciences of the American Association of Arts and Sciences, which emphasizes the importance of social sciences and Humanities in technical fields, the essays and papers collected in this book were presented at the NSF-funded workshop ‘Engineering a Better Future: Interplay between Engineering, Social Sciences and Innovation’, which brought together a singular collection of people, topics and disciplines. The book is split into three parts: A. Meeting at the Middle: Challenges to educating at the boundaries covers experiments in combining engineering education and the social sciences; B. Engineers Shaping Human Affairs: Investigating the interaction between social sciences and engineering, including the cult of innovation, politics of engineering, engineering design and future of societies; and C. Engineering the Engineers: Investigates thinking about design with papers on the art and science of science and engineering practice.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Literacies of Design


Book Description

Though engineering design can tackle the world’s most pressing challenges, engineering-related courses and experiences are often alienating, especially to people from minoritized groups. Literacies of Design: Studies of Equity and Imagination in Engineering and Making covers the latest pedagogical theories—as well as case studies and practical tips—to support diverse people in identifying problems and designing solutions through engineering and making. Engineers tackle a range of problems, big and small, from climate change to viral transmission to improved handrails for persons with disabilities. Inclusion and equity efforts include not only preparing the next generation of engineers and makers, but also creating and fostering spaces where youth can express their ideas and bring forth their whole selves. This book offers theories and real-life examples for educators and practitioners at every level, from K–12 through higher education and beyond.




Educational Sciences I


Book Description




Nature Did It First


Book Description

Part playful poetry, part nonfiction information, this kid-friendly introduction to biomimicry highlights the remarkable ways plants and animals have helped us solve some of our toughest engineering challenges. One well-known example of biomimicry is the invention of Velcro - inspired by the sticky burrs from a plant. Discover six more ways nature did first Back matter includes a glossary and a STEM challenge activity to use at home or in the classroom.




Design Education Today


Book Description

This book provides extensive information on the key technical design disciplines, education programs, international best practices and modes of delivery that are aimed at preparing a trans-disciplinary design workforce for the future. It also presents a comprehensive overview of the scope of, and state of the art in, design education. The book highlights signature design education programs from around the globe and across all levels, in both traditional and distance learning settings. Additionally, it discusses professional societies for designers and design educators, as well as the current standards for professional registration, and program accreditation. Reflecting recent advances and emerging trends, it offers a valuable handbook for design practitioners and managers, curriculum designers and program leaders alike. It will also be of interest to students and academics looking to develop a career related to the more technical aspects of design.




Standards for K-12 Engineering Education?


Book Description

The goal of this study was to assess the value and feasibility of developing and implementing content standards for engineering education at the K-12 level. Content standards have been developed for three disciplines in STEM education-science, technology, and mathematic-but not for engineering. To date, a small but growing number of K-12 students are being exposed to engineering-related materials, and limited but intriguing evidence suggests that engineering education can stimulate interest and improve learning in mathematics and science as well as improve understanding of engineering and technology. Given this background, a reasonable question is whether standards would improve the quality and increase the amount of teaching and learning of engineering in K-12 education. The book concludes that, although it is theoretically possible to develop standards for K-12 engineering education, it would be extremely difficult to ensure their usefulness and effective implementation. This conclusion is supported by the following findings: (1) there is relatively limited experience with K-12 engineering education in U.S. elementary and secondary schools, (2) there is not at present a critical mass of teachers qualified to deliver engineering instruction, (3) evidence regarding the impact of standards-based educational reforms on student learning in other subjects, such as mathematics and science, is inconclusive, and (4) there are significant barriers to introducing stand-alone standards for an entirely new content area in a curriculum already burdened with learning goals in more established domains of study.




Biomimicry


Book Description

Repackaged with a new afterword, this "valuable and entertaining" (New York Times Book Review) book explores how scientists are adapting nature's best ideas to solve tough 21st century problems. Biomimicry is rapidly transforming life on earth. Biomimics study nature's most successful ideas over the past 3.5 million years, and adapt them for human use. The results are revolutionizing how materials are invented and how we compute, heal ourselves, repair the environment, and feed the world. Janine Benyus takes readers into the lab and in the field with maverick thinkers as they: discover miracle drugs by watching what chimps eat when they're sick; learn how to create by watching spiders weave fibers; harness energy by examining how a leaf converts sunlight into fuel in trillionths of a second; and many more examples. Composed of stories of vision and invention, personalities and pipe dreams, Biomimicry is must reading for anyone interested in the shape of our future.




The Engineer of 2020


Book Description

To enhance the nation's economic productivity and improve the quality of life worldwide, engineering education in the United States must anticipate and adapt to the dramatic changes of engineering practice. The Engineer of 2020 urges the engineering profession to recognize what engineers can build for the future through a wide range of leadership roles in industry, government, and academia-not just through technical jobs. Engineering schools should attract the best and brightest students and be open to new teaching and training approaches. With the appropriate education and training, the engineer of the future will be called upon to become a leader not only in business but also in nonprofit and government sectors. The book finds that the next several decades will offer more opportunities for engineers, with exciting possibilities expected from nanotechnology, information technology, and bioengineering. Other engineering applications, such as transgenic food, technologies that affect personal privacy, and nuclear technologies, raise complex social and ethical challenges. Future engineers must be prepared to help the public consider and resolve these dilemmas along with challenges that will arise from new global competition, requiring thoughtful and concerted action if engineering in the United States is to retain its vibrancy and strength.