Engineering Mathematics with MATLAB


Book Description

The aim of this book is to help the readers understand the concepts, techniques, terminologies, and equations appearing in the existing books on engineering mathematics using MATLAB. Using MATLAB for computation would be otherwise time consuming, tedious and error-prone. The readers are recommended to have some basic knowledge of MATLAB.




Advanced Engineering Mathematics with MATLAB


Book Description

In the four previous editions the author presented a text firmly grounded in the mathematics that engineers and scientists must understand and know how to use. Tapping into decades of teaching at the US Navy Academy and the US Military Academy and serving for twenty-five years at (NASA) Goddard Space Flight, he combines a teaching and practical experience that is rare among authors of advanced engineering mathematics books. This edition offers a smaller, easier to read, and useful version of this classic textbook. While competing textbooks continue to grow, the book presents a slimmer, more concise option. Instructors and students alike are rejecting the encyclopedic tome with its higher and higher price aimed at undergraduates. To assist in the choice of topics included in this new edition, the author reviewed the syllabi of various engineering mathematics courses that are taught at a wide variety of schools. Due to time constraints an instructor can select perhaps three to four topics from the book, the most likely being ordinary differential equations, Laplace transforms, Fourier series and separation of variables to solve the wave, heat, or Laplace's equation. Laplace transforms are occasionally replaced by linear algebra or vector calculus. Sturm-Liouville problem and special functions (Legendre and Bessel functions) are included for completeness. Topics such as z-transforms and complex variables are now offered in a companion book, Advanced Engineering Mathematics: A Second Course by the same author. MATLAB is still employed to reinforce the concepts that are taught. Of course, this Edition continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of previous editions. Worked solutions are given in the back of the book.







Programming Mathematics Using MATLAB


Book Description

Providing an alternative to engineering-focused resources in the area, Programming Mathematics Using MATLAB® introduces the basics of programming and of using MATLAB® by highlighting many mathematical examples. Emphasizing mathematical concepts through the visualization of programming throughout the book, this useful resource utilizes examples that may be familiar to math students (such as numerical integration) and others that may be new (such as fractals). Additionally, the text uniquely offers a variety of MATLAB® projects, all of which have been class-tested thoroughly, and which enable students to put MATLAB® programming into practice while expanding their comprehension of concepts such as Taylor polynomials and the Gram–Schmidt process. Programming Mathematics Using MATLAB® is appropriate for readers familiar with sophomore-level mathematics (vectors, matrices, multivariable calculus), and is useful for math courses focused on MATLAB® specifically and those focused on mathematical concepts which seek to utilize MATLAB® in the classroom. - Provides useful visual examples throughout for student comprehension - Includes valuable, class-tested projects to reinforce both familiarity with MATLAB® and a deeper understanding of mathematical principles - Offers downloadable MATLAB® scripts to supplement practice and provide useful example




Methods of Applied Mathematics with a MATLAB Overview


Book Description

Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.




Advanced Engineering Mathematics


Book Description

Through four previous editions of Advanced Engineering Mathematics with MATLAB, the author presented a wide variety of topics needed by today's engineers. The fifth edition of that book, available now, has been broken into two parts: topics currently needed in mathematics courses and a new stand-alone volume presenting topics not often included in these courses and consequently unknown to engineering students and many professionals. The overall structure of this new book consists of two parts: transform methods and random processes. Built upon a foundation of applied complex variables, the first part covers advanced transform methods, as well as z-transforms and Hilbert transforms--transforms of particular interest to systems, communication, and electrical engineers. This portion concludes with Green's function, a powerful method of analyzing systems. The second portion presents random processes--processes that more accurately model physical and biological engineering. Of particular interest is the inclusion of stochastic calculus. The author continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of his previous books. As before, theory is presented first, then examples, and then drill problems. Answers are given in the back of the book. This book is all about the future: The purpose of this book is not only to educate the present generation of engineers but also the next. "The main strength is the text is written from an engineering perspective. The majority of my students are engineers. The physical examples are related to problems of interest to the engineering students." --Lea Jenkins, Clemson University




Advanced Engineering Mathematics


Book Description

This work is based on the experience and notes of the authors while teaching mathematics courses to engineering students at the Indian Institute of Technology, New Delhi. It covers syllabi of two core courses in mathematics for engineering students.




Essential MATLAB for Scientists and Engineers


Book Description

Based on a teach-yourself approach, the fundamentals of MATLAB are illustrated throughout with many examples from a number of different scientific and engineering areas, such as simulation, population modelling, and numerical methods, as well as from business and everyday life. Some of the examples draw on first-year university level maths, but these are self-contained so that their omission will not detract from learning the principles of using MATLAB.This completely revised new edition is based on the latest version of MATLAB. New chapters cover handle graphics, graphical user interfaces (GUIs), structures and cell arrays, and importing/exporting data. The chapter on numerical methods now includes a general GUI-driver ODE solver.* Maintains the easy informal style of the first edition* Teaches the basic principles of scientific programming with MATLAB as the vehicle* Covers the latest version of MATLAB




Advanced Linear Algebra for Engineers with MATLAB


Book Description

Arming readers with both theoretical and practical knowledge, Advanced Linear Algebra for Engineers with MATLAB® provides real-life problems that readers can use to model and solve engineering and scientific problems in fields ranging from signal processing and communications to electromagnetics and social and health sciences. Facilitating a unique understanding of rapidly evolving linear algebra and matrix methods, this book: Outlines the basic concepts and definitions behind matrices, matrix algebra, elementary matrix operations, and matrix partitions, describing their potential use in signal and image processing applications Introduces concepts of determinants, inverses, and their use in solving linear equations that result from electrical and mechanical-type systems Presents special matrices, linear vector spaces, and fundamental principles of orthogonality, using an appropriate blend of abstract and concrete examples and then discussing associated applications to enhance readers’ visualization of presented concepts Discusses linear operators, eigenvalues, and eigenvectors, and explores their use in matrix diagonalization and singular value decomposition Extends presented concepts to define matrix polynomials and compute functions using several well-known methods, such as Sylvester’s expansion and Cayley-Hamilton Introduces state space analysis and modeling techniques for discrete and continuous linear systems, and explores applications in control and electromechanical systems, to provide a complete solution for the state space equation Shows readers how to solve engineering problems using least square, weighted least square, and total least square techniques Offers a rich selection of exercises and MATLAB® assignments that build a platform to enhance readers’ understanding of the material Striking the appropriate balance between theory and real-life applications, this book provides both advanced students and professionals in the field with a valuable reference that they will continually consult.




Elementary Mathematical and Computational Tools for Electrical and Computer Engineers Using MATLAB


Book Description

Engineers around the world depend on MATLAB for its power, usability, and outstanding graphics capabilities. Yet too often, engineering students are either left on their own to acquire the background they need to use MATLAB, or they must learn the program concurrently within an advanced course. Both of these options delay students from solving realistic design problems, especially when they do not have a text focused on applications relevant to their field and written at the appropriate level of mathematics. Ideal for use as a short-course textbook and for self-study Elementary Mathematical and Computational Tools for Electrical and Computer Engineers Using MATLAB fills that gap. Accessible after just one semester of calculus, it introduces the many practical analytical and numerical tools that are essential to success both in future studies and in professional life. Sharply focused on the needs of the electrical and computer engineering communities, the text provides a wealth of relevant exercises and design problems. Changes in MATLAB's version 6.0 are included in a special addendum. The lack of skills in fundamental quantitative tools can seriously impede progress in one's engineering studies or career. By working through this text, either in a lecture/lab environment or by themselves, readers will not only begin mastering MATLAB, but they will also hone their analytical and computational skills to a level that will help them to enjoy and succeed in subsequent electrical and computer engineering pursuits.