Mechanics and Strength of Materials


Book Description

Gives a clear and thorough presentation of the fundamental principles of mechanics and strength of materials. Provides both the theory and applications of mechanics of materials on an intermediate theoretical level. Useful as a reference tool by postgraduates and researchers in the fields of solid mechanics as well as practicing engineers.




Strength of Materials


Book Description

In addition to coverage of customary elementary subjects (tension, torsion, bending, etc.), this introductory text features advanced material on engineering methods and applications, plus 350 problems and answers. 1949 edition.




History of Strength of Materials


Book Description

Strength of materials is that branch of engineering concerned with the deformation and disruption of solids when forces other than changes in position or equilibrium are acting upon them. The development of our understanding of the strength of materials has enabled engineers to establish the forces which can safely be imposed on structure or components, or to choose materials appropriate to the necessary dimensions of structures and components which have to withstand given loads without suffering effects deleterious to their proper functioning. This excellent historical survey of the strength of materials with many references to the theories of elasticity and structures is based on an extensive series of lectures delivered by the author at Stanford University, Palo Alto, California. Timoshenko explores the early roots of the discipline from the great monuments and pyramids of ancient Egypt through the temples, roads, and fortifications of ancient Greece and Rome. The author fixes the formal beginning of the modern science of the strength of materials with the publications of Galileo's book, "Two Sciences," and traces the rise and development as well as industrial and commercial applications of the fledgling science from the seventeenth century through the twentieth century. Timoshenko fleshes out the bare bones of mathematical theory with lucid demonstrations of important equations and brief biographies of highly influential mathematicians, including: Euler, Lagrange, Navier, Thomas Young, Saint-Venant, Franz Neumann, Maxwell, Kelvin, Rayleigh, Klein, Prandtl, and many others. These theories, equations, and biographies are further enhanced by clear discussions of the development of engineering and engineering education in Italy, France, Germany, England, and elsewhere. 245 figures.




Advanced Strength of Materials


Book Description

Four decades ago, J.P. Den Hartog, then Professor of Mechanical Engineering at Massachusetts Institute of Technology, wrote Strength of Materials, an elementary text that still enjoys great popularity in engineering schools throughout the world. Widely used as a classroom resource, it has also become a favorite reference and refresher on the subject among engineers everywhere. This is the first paperback edition of an equally successful text by this highly respected engineer and author. Advanced Strength of Materials takes this important subject into areas of greater difficulty, masterfully bridging its elementary aspects and its most formidable advanced reaches. The book reflects Den Hartog's impressive talent for making lively, discursive and often witty presentations of his subject, and his unique ability to combine the scholarly insight of a distinguished scientist with the practical, problem-solving orientation of an experienced industrial engineer. The concepts here explored in depth include torsion, rotating disks, membrane stresses in shells, bending of flat plates, beams on elastic foundation, the two-dimensional theory of elasticity, the energy method and buckling. The presentation is aimed at the student who has a one-semester course in elementary strength of materials. The book includes an especially thorough and valuable section of problems and answers which give both students and professionals practice in techniques and clear illustrations of applications.










Applied Strength of Materials


Book Description

Designed for a first course in strength of materials, Applied Strength of Materials has long been the bestseller for Engineering Technology programs because of its comprehensive coverage, and its emphasis on sound fundamentals, applications, and problem-solving techniques. The combination of clear and consistent problem-solving techniques, numerous end-of-chapter problems, and the integration of both analysis and design approaches to strength of materials principles prepares students for subsequent courses and professional practice. The fully updated Sixth Edition. Built around an educational philosophy that stresses active learning, consistent reinforcement of key concepts, and a strong visual component, Applied Strength of Materials, Sixth Edition continues to offer the readers the most thorough and understandable approach to mechanics of materials.




Engineering Mechanics


Book Description

Engineering Mechanics is print only. Engineering Mechanics is an ideal introductorytext for first-year engineering students coveringthe three basic topic areas: statics, introductorydynamics and introductory strength of materials. Each chapter contains worked examplesand self-assessment exercises to encouragestudents to test their own skills and knowledgeas they progress.







Engineering Mechanics 2


Book Description

Now in its second English edition, Mechanics of Materials is the second volume of a three-volume textbook series on Engineering Mechanics. It was written with the intention of presenting to engineering students the basic concepts and principles of mechanics in as simple a form as the subject allows. A second objective of this book is to guide the students in their efforts to solve problems in mechanics in a systematic manner. The simple approach to the theory of mechanics allows for the different educational backgrounds of the students. Another aim of this book is to provide engineering students as well as practising engineers with a basis to help them bridge the gaps between undergraduate studies, advanced courses on mechanics and practical engineering problems. The book contains numerous examples and their solutions. Emphasis is placed upon student participation in solving the problems. The new edition is fully revised and supplemented by additional examples. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Volume 1 deals with Statics and Volume 3 treats Particle Dynamics and Rigid Body Dynamics. Separate books with exercises and well elaborated solutions are available.