Electronic Properties of Semiconductor Interfaces


Book Description

Using the continuum of interface-induced gap states (IFIGS) as a unifying theme, Mönch explains the band-structure lineup at all types of semiconductor interfaces. These intrinsic IFIGS are the wave-function tails of electron states, which overlap a semiconductor band-gap exactly at the interface, so they originate from the quantum-mechanical tunnel effect. He shows that a more chemical view relates the IFIGS to the partial ionic character of the covalent interface-bonds and that the charge transfer across the interface may be modeled by generalizing Pauling?s electronegativity concept. The IFIGS-and-electronegativity theory is used to quantitatively explain the barrier heights and band offsets of well-characterized Schottky contacts and semiconductor heterostructures, respectively.




Metal-semiconductor Contacts


Book Description

This second edition brings a greatly expanded treatment of the physics of Schottky-barrier formation to its comprehensive discussion of modern semiconductor technology. Topics covered include the current/voltage relationship, the capacitance of rectifying contacts, and practical methods of fabricating contacts. Written for semiconductor technologists and physicists engaged in research on semiconductor interfaces, this text emphasizes practical implications wherever they are relevant to device technology.




Metallization and Metal-Semiconductor Interfaces


Book Description

This book represents the work presented at a NATO Advanced Research Workshop on "Metallization and Metal-Semiconductor Interfaces", held at the Technical University of Munich, Garching, W. Germany from 22-26 August 1988. The major focus of the workshop was to evaluate critically the progress made in the area of metal-semiconductor interfaces. The underlying theme was the mechanism of Schottky barrier formation and a serious as sessment of the various models. A significant fraction of the workshop time was also spent in discussing the interaction of alkali metals with semiconductors. Alkali metals on semi conductors form ordered overlayers and the resulting system often exhibits one-dimensional metallic properties. The nature of their interaction has introduced new and exciting com plexities and this was pursued at length during the lively discussions at the workshop. A half a day was devoted to Scanning Tunneling Microscopy, the emphasis being on its utility in providing structural and electronic character of low-coverage regime. The book should pro vide readers with the most current status of the research activity in the general area of metal-semiconductor interfaces at an international level. It should also serve as an excellent introduction to the field, since sufficient review type of material has also been included The workshop organizers, Dr. I. P. Batra (Director), mM Almaden Research Center, San Jose, Prof. S. Ciraci, Bilkent University, Ankara, Prof. C. Y. Pong, University of California, Davis, Prof. Dr. F. Koch (Local Chairman), Technical University Munich, Garching, Dr. H.




Band Structure Engineering in Semiconductor Microstructures


Book Description

This volume contains the proceedings of the NATO Advanced Research Workshop on Band Structure Engineering in Semiconductor Microstructures held at Il Ciocco, Castelvecchio Pascali in Tuscany between 10th and 15th April 1988. Research on semiconductor microstructures has expanded rapidly in recent years as a result of developments in the semiconductor growth and device fabrication technologies. The emergence of new semiconductor structures has facilitated a number of approaches to producing systems with certain features in their electronic structure which can lead to useful or interesting properties. The interest in band structure engineering has stimd ated a variety of physical investigations and nove 1 device concepts and the field now exhibits a fascinating interplay betwepn pure physics and device technology. Devices based on microstruc tures are useful vehicles for fundamental studies but also new device ideas require a thorough understanding of the basic physics. Around forty researchers gathered at I1 Ciocco in the Spring of 1988 to discuss band structure engineering in semiconductor microstructures.




Semiconductor Interfaces And Microstructures


Book Description

Recently there have been major achievements in the study of semiconductor interfaces and microstructures for different materials and structural systems. Progress has been made through various experimental technologies and theoretical methods. This book provides an up-to-date review on these advances and includes the following major subjects: IV-IV, III-V and II-VI semiconductors and metal/semiconductor structures; new developments in growth methods; electric, optical, magnetic and structural characterization and properties; relative theories — electronic transport, phonos and interface modes; devices and applications. These materials are organized into four sections: General, III-V, II-VI and IV-IV, which offer comprehensive information and help readers in following the new developments in the research frontiers of the above fields.




Metal-semiconductor Interfaces


Book Description




Electrochemistry at Metal and Semiconductor Electrodes


Book Description

Electrochemisty at Metal and Semiconductor Electrodes covers the structure of the electrical double layer and charge transfer reactions across the electrode/electrolyte interface. The purpose of the book is to integrate modern electrochemistry and semiconductor physics, thereby, providing a quantitative basis for understanding electrochemistry at metal and semiconductor electrodes. Electrons and ions are the principal particles which play the main role in electrochemistry. This text, therefore, emphasizes the energy level concepts of electrons and ions rather than the phenomenological thermodynamic and kinetic concepts on which most of the classical electrochemistry texts are based. This rationalization of the phenomenological concepts in terms of the physics of semiconductors should enable readers to develop more atomistic and quantitative insights into processes that occur at electrodes. The book incorporates many traditional disciplines of science and engineering such as interfacial chemistry, biochemistry, enzyme chemistry, membrane chemistry, metallurgy, modification of solid interfaces, and materials' corrosion. The text is intended to serve as an introduction for the study of advanced electrochemistry at electrodes and is aimed towards graduates and senior undergraduates studying materials and interfacial chemistry or those beginning research work in the field of electrochemistry.




Control of Semiconductor Interfaces


Book Description

This book focuses exclusively on control of interfacial properties and structures for semiconductor device applications from the point of view of improving and developing novel electrical properties. The following topics are covered: metal-semiconductors, semiconductor hetero-interfaces, characterization, semiconducting new materials, insulator-semiconductor, interfaces in device, control of interface formation, control of interface properties, contact metallization. A variety of up-to-date research topics such as atomic layer epitaxy, atomic layer passivation, atomic scale characterization including STM and SR techniques, single ion implementation, self-organization crystal growth, in situ measurements for process control and extremely high-spatial resolution analysis techniques, are also included. Furthermore it bridges the macroscopic, mesoscopic, and atomic-scale regimes of semicondutor interfaces, describing the state of the art in forming, controlling and characterizating unique semiconductor interfaces, which will be of practical importance in advanced devices. Intended for both technologists who require an up-to-date assessment of methods for interface formation, processing and characterization, and solid state researchers who desire the latest developments in understanding the basic mechanisms of interface physics, chemistry and electronics, this book will be a welcome addition to the existing literature.




Physics of Semiconductor Devices


Book Description

The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative-resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices: Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices Offers completely updated and revised information that reflects advances in device concepts, performance, and application Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual for Instructor's only Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space-transfer devices, and MOS-controlled thyristors Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.




Semiconductor Physical Electronics


Book Description

The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.