Biotechnology for Biofuel Production and Optimization


Book Description

Biotechnology for Biofuel Production and Optimization is the compilation of current research findings that cover the entire process of biofuels production from manipulation of genes and pathways to organisms and renewable feedstocks for efficient biofuel production as well as different cultivation techniques and process scale-up considerations. This book captures recent breakthroughs in the interdisciplinary areas of systems and synthetic biology, metabolic engineering, and bioprocess engineering for renewable, cleaner sources of energy. - Describes state-of-the-art engineering of metabolic pathways for the production of a variety of fuel molecules - Discusses recent advances in synthetic biology and metabolic engineering for rational design, construction, evaluation of novel pathways and cell chassis - Covers genome engineering technologies to address complex biofuel-tolerant phenotypes for enhanced biofuel production in engineered chassis - Presents the use of novel microorganisms and expanded substrate utilization strategies for production of targeted fuel molecules - Explores biohybrid methods for harvesting bioenergy - Discusses bioreactor design and optimization of scale-up




Engineering of Microorganisms for the Production of Chemicals and Biofuels from Renewable Resources


Book Description

This book reviews state of the art regarding strategies for generating and improving microbial strains designed for utilizing renewable raw materials. It discusses methods for genetically engineering of thermophilic bacteria, Saccharomyces cerevisiae, Escherichia coli and Zymomonas mobilis, as well as approaches for obtaining useful products from these renewable raw materials based on biotechnological processes using microbes to chemically transform them. However, the efficient transformation of lignocellulosic biomass or glycerol to useful products represents a major challenge: Biomass has to be treated physically and chemically to release a mixture of sugars that potentially can be employed by the microbial production strains. These hydrolytic treatments result in diverse toxic compounds being generated and released, that negatively impact strain performance. Furthermore, most of the commonly used industrial microbes do not have the natural capacity to efficiently utilize and transform the generated sugar mixtures or glycerol. The microbial species reviewed in this book possess particular advantages as production strains and are currently employed for the synthesis of numerous biofuels and chemicals. The book reviews the general and strain-specific genetic engineering strategies for the improvement of sugar mixtures and glycerol catabolism. The issue of lignocellulosic hydrolysate toxicity is addressed in several chapters, where genetic engineering and adaptive laboratory evolution strategies are reviewed and discussed. The objective of this book is to provide the current knowledge regarding strategies for the generation and improvement of microbial strains designed for the transformation of renewable raw materials into useful products. This book aims to become a reference for researchers and students working in this field.




Biomolecular Engineering Solutions for Renewable Specialty Chemicals


Book Description

Discover biomolecular engineering technologies for the production of biofuels, pharmaceuticals, organic and amino acids, vitamins, biopolymers, surfactants, detergents, and enzymes In Biomolecular Engineering Solutions for Renewable Specialty Chemicals, distinguished researchers and editors Drs. R. Navanietha Krishnaraj and Rajesh K. Sani deliver a collection of insightful resources on advanced technologies in the synthesis and purification of value-added compounds. Readers will discover new technologies that assist in the commercialization of the production of value-added products. The editors also include resources that offer strategies for overcoming current limitations in biochemical synthesis, including purification. The articles within cover topics like the rewiring of anaerobic microbial processes for methane and hythane production, the extremophilic bioprocessing of wastes to biofuels, reverse methanogenesis of methane to biopolymers and value-added products, and more. The book presents advanced concepts and biomolecular engineering technologies for the production of high-value, low-volume products, like therapeutic molecules, and describes methods for improving microbes and enzymes using protein engineering, metabolic engineering, and systems biology approaches for converting wastes. Readers will also discover: A thorough introduction to engineered microorganisms for the production of biocommodities and microbial production of vanillin from ferulic acid Explorations of antibiotic trends in microbial therapy, including current approaches and future prospects, as well as fermentation strategies in the food and beverage industry Practical discussions of bioactive oligosaccharides, including their production, characterization, and applications In-depth treatments of biopolymers, including a retrospective analysis in the facets of biomedical engineering Perfect for researchers and practicing professionals in the areas of environmental and industrial biotechnology, biomedicine, and the biological sciences, Biomolecular Engineering Solutions for Renewable Specialty Chemicals is also an invaluable resource for students taking courses involving biorefineries, biovalorization, industrial biotechnology, and environmental biotechnology.




Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass


Book Description

Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass describes the different aspects of biofuel production from lignocellulosic biomass. Each chapter presents different technological approaches for cost effective liquid biofuel production from agroresidues/biomass. Two chapters cover future direction and the possibilities of biomass-based biofuel production at the industrial level. The book provides a genetic and metabolic engineering approach for improved cellulase production and the potential of strains that can ferment both pentose and hexose sugars. The book also gives direction on how to overcome challenges for the further advancement of lignocellulosic biomass-based biofuel production. - Covers genetic engineering approaches for higher cellulase production from fungi - Includes genetic and metabolic engineering approaches for development of potential pentose and hexose fermenting strain which can tolerate high ethanol and toxic phenolic compounds - Describe different bioreactors used in different steps of biomass-based biofuel production - Outlines future prospects and potential of biofuel production from lignocellulosic biomass




Microbial Energy Conversion


Book Description

The book provides an overview on various microorganisms and their industrialization in energy conversion, such as ethanol fermentation, butanol fermentation, biogas fermentation and fossil energy conversion. It also covers microbial oil production, hydrogen production and electricity generation. The content is up to date and suits well for both researchers and industrial audiences.




Industrialization of Biology


Book Description

The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.




Biofuels and Bioenergy


Book Description

With increased public and scientific attention driven by factors such as oil price spikes, the need for increased energy security, and concerns over greenhouse gas emissions from fossil fuels, the production of fuels by biological systems is becoming increasingly important as the world seeks to move towards renewable, sustainable energy sources. Biofuels and Bioenergy presents a broad, wide-ranging and informative treatment of biofuels. The book covers historical, economic, industrial, sociological and ecological/environmental perspectives as well as dealing with all the major scientific issues associated with this important topic. With contributions from a range of leading experts covering key aspects, including: • Conventional biofuels. • Basic biology, biochemistry and chemistry of different types and classes of biofuel. • Current research in synthetic biology and GM in the development and exploitation of new biofuel sources. • Aspects relating to ecology and land use, including the fuel v food dilemma. • Sustainability of different types of biofuel. • Ethical aspects of biofuel production. Biofuels and Bioenergy provides students and researchers in biology, chemistry, biochemistry and chemical engineering with an accessible review of this increasingly important subject.




Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts


Book Description

Advanced Bioprocessing for Alternative Fuels, Bio-based Chemicals, and Bioproducts: Technologies and Approaches for Scale-Up and Commercialization demonstrates novel systems that apply advanced bioprocessing technologies to produce biofuels, bio-based chemicals, and value-added bioproducts from renewable sources. The book presents the use of novel oleaginous microorganisms and utilization strategies for applications of advanced bioprocessing technology in biofuels production and thoroughly depicts the technological breakthroughs of value added bioproducts. It also aides in the design, evaluation and production of biofuels by describing metabolic engineering and genetic manipulation of biofuels feedstocks. Users will find a thorough overview of the most recent discoveries in biofuels research and the inherent challenges associated with scale up. Emphasis is placed on technological milestones and breakthroughs in applications of new bioprocessing technologies for biofuels production. Its essential information can be used to understand how to incorporate advanced bioprocessing technologies into the scaling up of laboratory technologies to industrial applications while complying with biofuels policies and regulations. - Presents the use of novel oleaginous microorganisms and utilization strategies for the applications of advanced technologies in biofuels production - Provides a basis for technology assessments, progress and advances, as well as the challenges associated with biofuels at industrial scale - Describes, in detail, technologies for metabolic engineering and genetic manipulation of biofuels feedstocks, thus aiding in the design, evaluation and production of advanced biofuels




Biomass, Biofuels, Biochemicals


Book Description

Microbial Fermentation of Biowastes summarizes new advances in the development of various strategies for enhanced microbial fermentation for organic waste conversion to bioenergy/biochemicals, and for biodegradation of plastic waste. Sections cover principles of additive strategies, multi-stage bioreactors, microbial bioaugmentation strategies, genetically engineered microorganisms, co-digestion strategies, feedstock pre-treatment strategies, enzyme technologies, and hybrid technologies methods. In addition, the book reviews progress in the conversion of common wastes to bioenergy and biochemicals via enhanced anaerobic digestion, also summarizing the significant progress achieved on enhancing anaerobic digestion via additive strategy, multi-stage bioreactor strategy, microbial bioaugmentation strategy, genetic engineering approach, and much more. Includes enhancing strategies for microbial fermentation technologies for biowastes conversion to bioenergy and biochemicals Provides progress on bioenergy/resource recovery from common biowastes, including food waste, agricultural waste, manure, wastewater and algal residues Includes microbial biodegradation of plastic waste




Biorefinery Production Technologies for Chemicals and Energy


Book Description

This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy. The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals. The book is divided into four parts. The first part, "Basic Principles of Biorefinery," covers the concept of biorefinery, its application in industrial bioprocessing, the utilization of biomass for biorefinery application, and its future prospects and economic performance. The second part, "Biorefinery for Production of Chemicals," covers the production of bioactive compounds, gallic acid, C4, C5, and C6 compounds, etc., from a variety of substrates. The third part, "Biorefinery for Production of Alternative Fuel and Energy," covers sustainable production of bioethanol, biodiesel, and biogas from different types of substrates. The last part of this book discusses sequential utilization of wheat straw, material balance, and biorefinery approach. The approaches presented in this book will help readers/users from different areas like process engineering and biochemistry to plan integrated and inventive methods to trim down the expenditure of the industrial manufacture process to accomplish cost-effective feasible products in biorefinery.