Engineering Plants for Agriculture


Book Description

Agriculture plays a vital role supporting human life on Earth but faces significant challenges because of population growth, plant pathogens, and climate change. Genetic engineering of crops promises to increase food yields, create drought- and pest-resistant crops, and improve nutrition in the developing world. Written and edited by experts in the field, this collection from Cold Spring Harbor Perspectives in Biology examines the molecular bases of different plant characteristics and how they can be manipulated genetically using modern molecular biological techniques. The contributors review recent advances in our understanding of plant plasticity, circadian rhythms, stomatal development, inflorescence architecture, symbiotic phosphate acquisition, and specialized plant metabolism and discuss how this knowledge might be used to boost yields, improve tolerance to pathogens and environmental stress, and enhance nutritional content. Several chapters are devoted to the development of specific genetically modified plants (e.g., disease-resistant cassava and submergence-tolerant rice) and their agronomic and socioeconomic impacts. The generation of blight-resistant American chestnut trees--the first bioengineered plants developed with the goal of ecological restoration--is also described. This volume is therefore an essential read for all plant biologists, geneticists, and engineers interested in addressing agricultural as well as environmental challenges.




Genetically Engineered Crops


Book Description

Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.




Genetic Engineering of Plants


Book Description

"The book...is, in fact, a short text on the many practical problems...associated with translating the explosion in basic biotechnological research into the next Green Revolution," explains Economic Botany. The book is "a concise and accurate narrative, that also manages to be interesting and personal...a splendid little book." Biotechnology states, "Because of the clarity with which it is written, this thin volume makes a major contribution to improving public understanding of genetic engineering's potential for enlarging the world's food supply...and can be profitably read by practically anyone interested in application of molecular biology to improvement of productivity in agriculture."




Safety of Genetically Engineered Foods


Book Description

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.




Plant Tolerance to Abiotic Stresses in Agriculture: Role of Genetic Engineering


Book Description

Environmental stresses represent the most limiting factors for agricultural productivity worldwide. These stresses impact not only current crop species, they are also significant barriers to the introduction of crop plants into areas that are not currently being used for agriculture. Stresses associated with temperature, salinity and drought, singly or in combination, are likely to enhance the severity of problems to which plants will be exposed in the coming decades. The present book brings together contributions from many laboratories around the world to discuss and compare our current knowledge of the role stress genes play in plant stress tolerance. In addition, strategies are discussed to introduce these genes and the processes that they encode into economically important crops, and the effect this will have on plant productivity.




Genetic Modification of Plants


Book Description

Conceived with the aim of sorting fact from fiction over genetically modified (GM) crops, this book brings together the knowledge of 30 specialists in the field of transgenic plants. It covers the generation and detection of these plants as well as the genetic traits conferred on transgenic plants. In addition, the book looks at a wide variety of crops, ornamental plants and tree species that are subject to genetic modifications, assessing the risks involved in genetic modification as well as the potential economic benefits of the technology in specific cases. The book’s structure, with fully cross-referenced chapters, gives readers a quick access to specific topics, whether that is comprehensive data on particular species of ornamentals, or coverage of the socioeconomic implications of GM technology. With an increasing demand for bioenergy, and the necessary higher yields relying on wider genetic variation, this book supplies all the technical details required to move forward to a new era in agriculture.




Genetic Engineering in Agriculture


Book Description

As debate rages over the costs and benefits of genetically engineered crops, noted agroecologist Miguel Altieri lucidly examines some of the issue's most basic and pressing questions: Are transgenic crops similar to conventionally bred crops? Are transgenic crops safe to eat? Does biotechnology increase yields? Does it reduce pesticide use? What are the costs to American farmers? Will biotechnology benefit poor farmers? Can biotechnology coexist with other forms of agriculture? What are the known and potential environmental and biological risks? What alternatives do we have to genetically modified crops?




Genetic Engineering of Horticultural Crops


Book Description

Genetic Engineering of Horticultural Crops provides key insights into commercialized crops, their improved productivity, disease and pest resistance, and enhanced nutritional or medicinal benefits. It includes insights into key technologies, such as marker traits identification and genetic traits transfer for increased productivity, examining the latest transgenic advances in a variety of crops and providing foundational information that can be applied to new areas of study. As modern biotechnology has helped to increase crop productivity by introducing novel gene(s) with high quality disease resistance and increased drought tolerance, this is an ideal resource for researchers and industry professionals. - Provides examples of current technologies and methodologies, addressing abiotic and biotic stresses, pest resistance and yield improvement - Presents protocols on plant genetic engineering in a variety of wide-use crops - Includes biosafety rule regulation of genetically modified crops in the USA and third world countries




Crop Improvement


Book Description

The improvement of crop species has been a basic pursuit since cultivation began thousands of years ago. To feed an ever increasing world population will require a great increase in food production. Wheat, corn, rice, potato and few others are expected to lead as the most important crops in the world. Enormous efforts are made all over the world to document as well as use these resources. Everybody knows that the introgression of genes in wheat provided the foundation for the “Green Revolution”. Later also demonstrated the great impact that genetic resources have on production. Several factors are contributing to high plant performance under different environmental conditions, therefore an effective and complementary use of all available technological tools and resources is needed to meet the challenge.




Plants, Genes, and Agriculture


Book Description

What needs to happen if we are going to feed almost 10 billion people by the year 2050 in a sustainable way? Written for first- and second-year university students, this interdisciplinary textbook addresses this challenging question, presenting biological, economic, and sociocultural issues at an introductory level. Presenting and integrating information from many disciplines, this book invites readers to consider the complexity of feeding humanity and increasing food production sustainably. Topics covered include: the development, physiology, and nutrition of plants human nutrition and food safety photosynthesis and energy transformations genetics, molecular biology, and genomics, including the techniques of genetic transformation (gene silencing, gene editing with CRISPR) used in modern crop breeding crop domestication and plant breeding soil ecosystems The applications of modern biotechnology to agriculture extend far beyond GMOs, and include crop improvements that rely on knowledge of the plant’s genomes and its analysis by bioinformatics. Challenging and controversial topics such as the safety of pesticides and GMOs, the increasing demand foranimal products and the stresses this puts on agricultural output, organic farming and foods, and patenting new crop varieties are dealt with in a balanced way, inviting teachers and students to consider all the implications of these serious questions.