Engineering Research and America's Future


Book Description

Leadership in innovation is essential to U.S. prosperity and security. In a global, knowledge-driven economy, technological innovationâ€"the transformation of new knowledge into products, processes, and services of value to societyâ€"is critical to competitiveness, long-term productivity growth, and an improved quality of life. Preeminence in technological innovation depends on a wide array of factors, one of which is leadership in engineering research, education, and practice. A threedecade- long decline in the share of federal investment in research and development devoted to engineering and a perceived erosion of basic, long-term engineering research capability in U.S. industry and federal laboratories have raised serious questions about the long-term health of engineering research in the United States. This book illustrates the critical role of engineering research in maintaining U.S. technological leadership; documents major challenges and opportunities facing the U.S. engineering research enterprise; and offers specific recommendations for leaders in federal and state government, industry, and universities to help strengthen U.S. engineering research in the face of intensifying global competition.




Crafting Your Research Future


Book Description

What is it like to be a researcher or a scientist? For young people, including graduate students and junior faculty members in universities, how can they identify good ideas for research? How do they conduct solid research to verify and realize their new ideas? How can they formulate their ideas and research results into high-quality articles, and publish them in highly competitive journals and conferences? What are effective ways to supervise graduate students so that they can establish themselves quickly in their research careers? In this book, Ling and Yang answer these questions in a step-by-step manner with specific and concrete examples from their first-hand research experience. Table of Contents: Acknowledgments / Preface / Basics of Research / Goals of Ph.D. Research / Getting Started: Finding New Ideas and Organizing Your Plans / Conducting Solid Research / Writing and Publishing Papers / Misconceptions and Tips for Paper Writing / Writing and Defending a Ph.D. Thesis / Life After Ph.D. / Summary / References / Author Biographies




Engineering Research and America's Future


Book Description

Leadership in innovation is essential to U.S. prosperity and security. In a global, knowledge-driven economy, technological innovationâ€"the transformation of new knowledge into products, processes, and services of value to societyâ€"is critical to competitiveness, long-term productivity growth, and an improved quality of life. Preeminence in technological innovation depends on a wide array of factors, one of which is leadership in engineering research, education, and practice. A threedecade- long decline in the share of federal investment in research and development devoted to engineering and a perceived erosion of basic, long-term engineering research capability in U.S. industry and federal laboratories have raised serious questions about the long-term health of engineering research in the United States. This book illustrates the critical role of engineering research in maintaining U.S. technological leadership; documents major challenges and opportunities facing the U.S. engineering research enterprise; and offers specific recommendations for leaders in federal and state government, industry, and universities to help strengthen U.S. engineering research in the face of intensifying global competition.




Engineering a Better Future


Book Description

This open access book examines how the social sciences can be integrated into the praxis of engineering and science, presenting unique perspectives on the interplay between engineering and social science. Motivated by the report by the Commission on Humanities and Social Sciences of the American Association of Arts and Sciences, which emphasizes the importance of social sciences and Humanities in technical fields, the essays and papers collected in this book were presented at the NSF-funded workshop ‘Engineering a Better Future: Interplay between Engineering, Social Sciences and Innovation’, which brought together a singular collection of people, topics and disciplines. The book is split into three parts: A. Meeting at the Middle: Challenges to educating at the boundaries covers experiments in combining engineering education and the social sciences; B. Engineers Shaping Human Affairs: Investigating the interaction between social sciences and engineering, including the cult of innovation, politics of engineering, engineering design and future of societies; and C. Engineering the Engineers: Investigates thinking about design with papers on the art and science of science and engineering practice.




A New Vision for Center-Based Engineering Research


Book Description

The future security, economic growth, and competitiveness of the United States depend on its capacity to innovate. Major sources of innovative capacity are the new knowledge and trained students generated by U.S. research universities. However, many of the complex technical and societal problems the United States faces cannot be addressed by the traditional model of individual university research groups headed by a single principal investigator. Instead, they can only be solved if researchers from multiple institutions and with diverse expertise combine their efforts. The National Science Foundation (NSF), among other federal agencies, began to explore the potential of such center-scale research programs in the 1970s and 1980s; in many ways, the NSF Engineering Research Center (ERC) program is its flagship program in this regard. The ERCs are "interdisciplinary, multi-institutional centers that join academia, industry, and government in partnership to produce transformational engineered systems and engineering graduates who are adept at innovation and primed for leadership in the global economy. To ensure that the ERCs continue to be a source of innovation, economic development, and educational excellence, A New Vision for Center-Based Engineering Research explores the future of center-based engineering research, the skills needed for effective center leadership, and opportunities to enhance engineering education through the centers.




The Future of Engineering


Book Description

In a world permeated by digital technology, engineering is involved in every aspect of human life. Engineers address a wider range of design problems than ever before, raising new questions and challenges regarding their work, as boundaries between engineering, management, politics, education and art disappear in the face of comprehensive socio-technical systems. It is therefore necessary to review our understanding of engineering practice, expertise and responsibility. This book advances the idea that the future of engineering will not be driven by a static view of a closed discipline, but rather will result from a continuous dialogue between different stakeholders involved in the design and application of technical artefacts. Based on papers presented at the 2016 conference of the forum for Philosophy, Engineering and Technology (fPET) in Nuremberg, Germany, the book features contributions by philosophers, engineers and managers from academia and industry, who discuss current and upcoming issues in engineering from a wide variety of different perspectives. They cover topics such as problem solving strategies and value-sensitive design, experimentation and simulation, engineering knowledge and education, interdisciplinary collaboration, sustainability, risk and privacy. The different contributions in combination draw a comprehensive picture of efforts worldwide to come to terms with engineering, its foundations in philosophy, the ethical problems it causes, and its effect on the ongoing development of society.




A Vision for the Future of Center-Based Multidisciplinary Engineering Research


Book Description

Out of concern for the state of engineering in the United States, the National Science Foundation (NSF) created the Engineering Research Centers (ERCs) with the goal of improving engineering research and education and helping to keep the United States competitive in global markets. Since the ERC program's inception in 1985, NSF has funded 67 ERCs across the United States. NSF funds each ERC for up to 10 years, during which time the centers build robust partnerships with industry, universities, and other government entities that can ideally sustain them upon graduation from NSF support. To ensure that the ERCs continue to be a source of innovation, economic development, and educational excellence, NSF commissioned the National Academies of Sciences, Engineering, and Medicine to convene a 1-day symposium in April 2016. This event featured four plenary panel presentations on: the evolving global context for center-based engineering research, trends in undergraduate and graduate engineering education, new directions in university-industry interaction, and emerging best practices in translating university research into innovation. This publication summarizes the presentations and discussions from the symposium.




Rising Above the Gathering Storm


Book Description

In a world where advanced knowledge is widespread and low-cost labor is readily available, U.S. advantages in the marketplace and in science and technology have begun to erode. A comprehensive and coordinated federal effort is urgently needed to bolster U.S. competitiveness and pre-eminence in these areas. This congressionally requested report by a pre-eminent committee makes four recommendations along with 20 implementation actions that federal policy-makers should take to create high-quality jobs and focus new science and technology efforts on meeting the nation's needs, especially in the area of clean, affordable energy: 1) Increase America's talent pool by vastly improving K-12 mathematics and science education; 2) Sustain and strengthen the nation's commitment to long-term basic research; 3) Develop, recruit, and retain top students, scientists, and engineers from both the U.S. and abroad; and 4) Ensure that the United States is the premier place in the world for innovation. Some actions will involve changing existing laws, while others will require financial support that would come from reallocating existing budgets or increasing them. Rising Above the Gathering Storm will be of great interest to federal and state government agencies, educators and schools, public decision makers, research sponsors, regulatory analysts, and scholars.




Forces Shaping the U.S. Academic Engineering Research Enterprise


Book Description

The way in which academic engineering research is financed and public expectations for the outcomes from such research are changing at an unprecedented rate. The decrease in support of defense-related research, coupled with the realization that many U.S. technological products are no longer competitive in the global market, has sent a shock wave through research universities that train engineers. This book argues for several concrete actions on the part of universities, government, and industry to ensure the flow and relevance of technical talent to meet national social and economic goals, to maintain a position of leadership in the global economy, and to preserve and enhance the nation's engineering knowledge base.




Engineering the Future


Book Description

Through Engineering the Future'sTM (EtF) practical real-world connections, students have an opportunity to see how science, mathematics, and engineering are part of their everyday world. Students take on the role of engineers and apply the engineering design process to define and solve problems by inventing and improving products, processes, and systems. Students develop an understanding of how advances in technology affect human society and how human society determines which new technologies will be developed. The concept of energy is fundamental to all of the sciences, but it is also challenging to learn. To build a useful mental model of energy, students learn to apply the same energy principles to thermal, fluid, and electrical systems.