Engineering Seismology


Book Description

The scope of engineering seismology includes geotechnical site investigations for buildings and engineering infrastructures, such as dams, levees, bridges, and tunnels, landslide and active-fault investigations, seismic microzonation, and geophysical investigations of historic buildings. These projects require multidisciplinary participation by the geologist, geophysicist, and geotechnical and earthquake engineers. A key objective of this book (SEG Investigations in Geophysics Series No. 17) by Öz Yilmaz is to encourage the specialists from these disciplines to apply the seismic method to solve the many challenging engineering problems they face. The broader scope of engineering seismology also includes exploration of earth resources, including groundwater exploration, coal and mineral exploration, and geothermal exploration. While focusing on the application of the seismic method to geotechnical site investigations, this book includes many case studies in all of the applications of engineering seismology.




Basic Earthquake Engineering


Book Description

This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.




Engineering Seismology and Earthquake Engineering


Book Description

by Julius S6lnes An Advanced Study Institute on engineering seismology and earthquake engineering was held in Izrrir, 'rurkey July 2-13, 1973 under the auspices of the Scientific Affairs Division of NATO. The Institute was organized by an organizing committee headed by the two scientific directors and with representation by the Turkish National Science Foundation, Turkish National Committee for Earthquake Engineering, the Middle East Technical University and the Aegean University. 93 scientists and engineers of 18 countries took part in the work of the Institute which comprised 10 working days with lectures, discussions and panel meetings. The main lecture topics of the Institute were covered in five main sections: 1. Generic causes of earthquakes. 2. Ground motion and foundation response. 3. Earthquake response of structures and design consi derations. 4. Codes and regulations; implementation. 5. Earthquake hazards and emergency planning. Upon completion of each section, general discussion and short presentations by several of the participants took place and summary statements were offered by the main lecturers. The atmosphere of the meetings was in- VI formal and cordial thus giving rise to many unorthodox and newly conceived ideas.




International Handbook of Earthquake & Engineering Seismology, Part A


Book Description

Modern scientific investigations of earthquakes began in the 1880s, and the International Association of Seismology was organized in 1901 to promote collaboration of scientists and engineers in studying earthquakes. The International Handbook of Earthquake and Engineering Seismology, under the auspices of the International Association of Seismology and Physics of the Earth's Interior (IASPEI), was prepared by leading experts under a distinguished international advisory board and team of editors.The content is organized into 56 chapters and includes over 430 figures, 24 of which are in color. This large-format, comprehensive reference summarizes well-established facts, reviews relevant theories, surveys useful methods and techniques, and documents and archives basic seismic data. It will be the authoritative reference for scientists and engineers and a quick and handy reference for seismologists.Also available is The International Handbook of Earthquake and Engineering Seismology, Part B.




Earthquake Engineering


Book Description

This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res




Engineering Seismology, Geotechnical and Structural Earthquake Engineering


Book Description

The mitigation of earthquake-related hazards represents a key role in the modern society. The mitigation of such kind of hazards spans from detailed studies on seismicity, evaluation of site effects, and seismo-induced landslides, tsunamis as well as and the design and analysis of structures to resist such actions. The study of earthquakes ties together science, technology and expertise in infrastructure and engineering in an effort to minimize human and material losses when they inevitably occur. Chapters deal with different topics aiming to mitigate geo-hazards such as: Seismic hazard analysis, Ground investigation for seismic design, Seismic design, assessment and remediation, Earthquake site response analysis and soil-structure interaction analysis.




Elements of Earthquake Engineering and Structural Dynamics


Book Description

Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena such as earthquakes involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by earthquakes. However, structural engineers must rely on the expertise of other specialists to realize these projects. Thus, this book not only focuses on structural analysis and design, but also discusses other disciplines, such as geology, seismology, and soil dynamics, providing basic knowledge in these areas so that structural engineers can better interact with different specialists when working on earthquake engineering projects."




Advanced Earthquake Engineering Analysis


Book Description

During the last decade, the state-of-the-art in Earthquake Engineering Design and Analysis has made significant steps towards a more rational analysis of structures. This book reviews the fundamentals of displacement based methods. Starting from engineering seismology and earthquake geotechnical engineering, it proceeds to focus on design, analysis and testing of structures with emphasis on buildings and bridges.




Earthquake Data in Engineering Seismology


Book Description

This book addresses current activities in strong-motion networks around the globe, covering issues related to designing, maintaining and disseminating information from these arrays. The book is divided into three principal sections. The first section includes recent developments in regional and global ground-motion predictive models. It presents discussions on the similarities and differences of ground motion estimations from these models and their application to design spectra as well as other novel procedures for predicting engineering parameters in seismic regions with sparse data. The second section introduces topics about the particular methodologies being implemented in the recently established global and regional strong-motion databanks in Europe to maintain and disseminate the archived accelerometric data. The final section describes major strong-motion arrays around the world and their historical developments. The last three chapters of this section introduce projects carried out within the context of arrays deployed for seismic risk studies in metropolitan areas. Audience: This timely book will be of particular interest for researchers who use accelerometric data extensively to conduct studies in earthquake engineering and engineering seismology.




Fundamentals of Earthquake Engineering


Book Description

Fundamentals of Earthquake Engineering combines aspects of engineering seismology, structural and geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to earthquake ground motion, from the seismic source to the evaluation of actions and deformation required for design. The nature of earthquake risk assessment is inherently multi-disciplinary. Whereas Fundamentals of Earthquake Engineering addresses only structural safety assessment and design, the problem is cast in its appropriate context by relating structural damage states to societal consequences and expectations, through the fundamental response quantities of stiffness, strength and ductility. The book is designed to support graduate teaching and learning, introduce practicing structural and geotechnical engineers to earthquake analysis and design problems, as well as being a reference book for further studies. Fundamentals of Earthquake Engineering includes material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation, definition of performance limit states, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. The accompanying website at www.wiley.com/go/elnashai contains a comprehensive set of slides illustrating the chapters and appendices. A set of problems with solutions and worked-through examples is available from the Wley Editorial team. The book, slides and problem set constitute a tried and tested system for a single-semester graduate course. The approach taken avoids tying the book to a specific regional seismic design code of practice and ensures its global appeal to graduate students and practicing engineers.