Materials Nanoarchitectonics


Book Description

Materials Nanoarchitectonics: From Integrated Molecular Systems to Advanced Devices provides the latest information on the design and molecular manipulation of self-organized hierarchically structured systems using tailor-made nanoscale materials as structural and functional units. The book is organized into three main sections that focus on molecular design of building blocks and hybrid materials, formation of nanostructures, and applications and devices. Bringing together emerging materials, synthetic aspects, nanostructure strategies, and applications, the book aims to support further progress, by offering different perspectives and a strong interdisciplinary approach to this rapidly growing area of innovation. This is an extremely valuable resource for researchers, advanced students, and scientists in industry, with an interest in nanoarchitectonics, nanostructures, and nanomaterials, or across the areas of nanotechnology, chemistry, surface science, polymer science, electrical engineering, physics, chemical engineering, and materials science. - Offers a nanoarchitectonic perspective on emerging fields, such as metal-organic frameworks, porous polymer materials, or biomimetic nanostructures - Discusses different approaches to utilizing "soft chemistry" as a source for hierarchically organized materials - Offers an interdisciplinary approach to the design and construction of integrated chemical nano systems - Discusses novel approaches towards the creation of complex multiscale architectures




Book of Abstracts


Book Description




Breath Figures


Book Description

This book offers a complete and concise overview of the different strategies used to prepare microstructured surfaces employing information regarding surface instabilities and physical processes. Based upon the concept of the remarkably uniform layer of water vapor that is applied when one simply breathes onto a surface in cold temperatures, the book presents a comprehensive treatise addressing chemical and physical fundamentals, fabrication, and applications of the breath figures approach to surface wetting, coating, and modification (breath figures self-assembly) of various materials. The main topics of the book are divided into six parts: the control of surface properties in polymer blends; block copolymer design with the aim of providing order at different lengths; combination of block copolymer blends with the breath figures (BFs); dynamic templating; the breath figures method; biorecognition; and alternative approaches for surface structuring and functionalization. Discusses various physical processing methods in preparing microstructured surfaces; Describes relevant aspects of micro- and nanostructured surfaces from fabrication to final applications, including additive manufacturing, bacterial adhesion and entrapment, optical and electro-optical applications, and membrane technology; Details the breath figures approach to surface structuring while discussing alternative strategies that tie morphology to functionality of materials.




Sequence-Controlled Polymers


Book Description

Edited by a leading authority in the field, the first book on this important and emerging topic provides an overview of the latest trends in sequence-controlled polymers. Following a brief introduction, the book goes on to discuss various synthetic approaches to sequence-controlled polymers, including template polymerization, genetic engineering and solid-phase chemistry. Moreover, monomer sequence regulation in classical polymerization techniques such as step-growth polymerization, living ionic polymerizations and controlled radical polymerizations are explained, before concluding with a look at the future for sequence-controlled polymers. With its unique coverage of this interdisciplinary field, the text will prove invaluable to polymer and environmental chemists, as well as biochemists and bioengineers.







Single-Chain Polymer Nanoparticles


Book Description

This first book on this important and emerging topic presents an overview of the very latest results obtained in single-chain polymer nanoparticles obtained by folding synthetic single polymer chains, painting a complete picture from synthesis via characterization to everyday applications. The initial chapters describe the synthetics methods as well as the molecular simulation of these nanoparticles, while subsequent chapters discuss the analytical techniques that are applied to characterize them, including size and structural characterization as well as scattering techniques. The final chapters are then devoted to the practical applications in nanomedicine, sensing, catalysis and several other uses, concluding with a look at the future for such nanoparticles. Essential reading for polymer and materials scientists, materials engineers, biochemists as well as environmental chemists.




Organic Electronics From Synthesis To Applications


Book Description

Organic electronics is one of the most exciting emerging areas of materials science. It is a highly interdisciplinary research area involving scientists and engineers who develop organic molecules with interesting properties for a variety of applications in technical industries (e.g. circuitry, energy harvesting/storage, etc.) and medical applications (e.g. bioelectronics for sensors, tissue scaffolds for tissue engineering, etc.). This Research Topic collects articles that report advances in chemistry (e.g. design and synthesis of molecules with various molecular weights and structures); physical chemistry and chemical physics, and computational/theoretical research (e.g. to push the boundaries of our understanding); chemical engineering (e.g. design, prototyping and manufacturing devices); materials scientists and technologists to explore different markets for the technologies employing such materials, the organic bioelectronics field and green/sustainable electronics.




Conjugated Conducting Polymers


Book Description

This book reviews the current understanding of electronic, optical and magnetic properties of conjugated polymers in both the semiconducting and metallic states. It introduces in particular novel phenomena and concepts in these quasi one-dimensional materials that differ from the well-established concepts valid for crystalline semiconductors. After a brief introductory chapter, the second chapter presents basic theore tical concepts and treats in detail the various models for n-conjugated polymers and the computational methods required to derive observable quantities. Specific spatially localized structures, often referred to as solitons, polarons and bipolarons, result naturally from the interaction between n-electrons and lattice displacements. For a semi-quantitative understanding of the various measure ments, electron-electron interactions have to be incorporated in the models; this in turn makes the calculations rather complicated. The third chapter is devoted to the electrical properties of these materials. The high metallic conductivity achieved by doping gave rise to the expression conducting polymers, which is often used for such materials even when they are in their semiconducting or insulating state. Although conductivity is one of the most important features, the reader will learn how difficult it is to draw definite conclusions about the nature of the charge carriers and the microscopic transport mechanism solely from electrical measurements. Optical properties are discussed in the fourth chapter.




Chemical Abstracts


Book Description




P3HT Revisited – From Molecular Scale to Solar Cell Devices


Book Description

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students