Engineering the Plant Factory for the Production of Biologics and Small-Molecule Medicines


Book Description

Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.







Controlled Environment Horticulture


Book Description

An understanding of crop physiology and ecophysiology enables the horticulturist to manipulate a plant’s metabolism towards the production of compounds that are beneficial for human health when that plant is part of the diet or the source of phytopharmaceutical compounds. The first part of the book introduces the concept of Controlled Environment Horticulture as a horticultural production technique used to maximize yields via the optimization of access to growing factors. The second part describes the use of this production technique in order to induce stress responses in the plant via the modulation of these growing factors and, importantly, the way that this manipulation induces defence reactions in the plant resulting in the production of compounds beneficial for human health. The third part provides guidance for the implementation of this knowledge in horticultural production.







Microbial Cell Factories Engineering for Production of Biomolecules


Book Description

Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. - Offers basic understanding and a clear picture of various MCFs - Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others - Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications - Highlights the advances, challenges, and future opportunities in designing MCFs




Industrialization of Biology


Book Description

The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.




Chemical Engineering in the Pharmaceutical Industry


Book Description

A guide to the important chemical engineering concepts for the development of new drugs, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry offers a guide to the experimental and computational methods related to drug product design and development. The second edition has been greatly expanded and covers a range of topics related to formulation design and process development of drug products. The authors review basic analytics for quantitation of drug product quality attributes, such as potency, purity, content uniformity, and dissolution, that are addressed with consideration of the applied statistics, process analytical technology, and process control. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The contributors explore technology transfer and scale-up of batch processes that are exemplified experimentally and computationally. Written for engineers working in the field, the book examines in-silico process modeling tools that streamline experimental screening approaches. In addition, the authors discuss the emerging field of continuous drug product manufacturing. This revised second edition: Contains 21 new or revised chapters, including chapters on quality by design, computational approaches for drug product modeling, process design with PAT and process control, engineering challenges and solutions Covers chemistry and engineering activities related to dosage form design, and process development, and scale-up Offers analytical methods and applied statistics that highlight drug product quality attributes as design features Presents updated and new example calculations and associated solutions Includes contributions from leading experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduation students, and professionals in the field of pharmaceutical sciences and manufacturing, Chemical Engineering in the Pharmaceutical Industry, Second Edition contains information designed to be of use from the engineer's perspective and spans information from solid to semi-solid to lyophilized drug products.




Chemical Engineering in the Pharmaceutical Industry


Book Description

A guide to the development and manufacturing of pharmaceutical products written for professionals in the industry, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry is a practical book that highlights chemistry and chemical engineering. The book’s regulatory quality strategies target the development and manufacturing of pharmaceutically active ingredients of pharmaceutical products. The expanded second edition contains revised content with many new case studies and additional example calculations that are of interest to chemical engineers. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The active pharmaceutical ingredients book puts the focus on the chemistry, chemical engineering, and unit operations specific to development and manufacturing of the active ingredients of the pharmaceutical product. The drug substance operations section includes information on chemical reactions, mixing, distillations, extractions, crystallizations, filtration, drying, and wet and dry milling. In addition, the book includes many applications of process modeling and modern software tools that are geared toward batch-scale and continuous drug substance pharmaceutical operations. This updated second edition: Contains 30new chapters or revised chapters specific to API, covering topics including: manufacturing quality by design, computational approaches, continuous manufacturing, crystallization and final form, process safety Expanded topics of scale-up, continuous processing, applications of thermodynamics and thermodynamic modeling, filtration and drying Presents updated and expanded example calculations Includes contributions from noted experts in the field Written for pharmaceutical engineers, chemical engineers, undergraduate and graduate students, and professionals in the field of pharmaceutical sciences and manufacturing, the second edition of Chemical Engineering in the Pharmaceutical Industryf ocuses on the development and chemical engineering as well as operations specific to the design, formulation, and manufacture of drug substance and products.




New Horizons in Natural Compound Research


Book Description

New Horizons in Natural Compound Research provides the latest updates in natural compound research (plant, microbes, algae, fungi) and their novel applications in health, agriculture and environment. The book gives recent advances in the extraction of natural compounds, cutting-edge approaches for natural compound purifications, and emerging trends in natural compound screening and identification. In addition, it provides a detailed explanation of the databases and libraries of natural compounds, as well as their significance. Sections focus on research and multidisciplinary practical techniques of natural product research, encouraging young scientists to pursue unique research while also generating strong research ideas. From a future perspective, this book acts as a guide to identify potential areas and new research opportunities in the field of natural products and their service towards human beings, animals and the environment. - Provides a one–stop solution for concepts, cutting-edge techniques, methods, and novel applications of natural products in health and the environment - Focuses on current gaps in natural product research, as well as methodologies and techniques to assist researchers in resolving existing challenges and speeding up the pace of drug discovery from natural sources - Highlights new avenues of natural product research - Contains contributions from well-experienced researchers from academia, research institutes and top-notch young scientists from industry




Molecular Pharming


Book Description

A single volume collection that surveys the exciting field of plant-made pharmaceuticals and industrial proteins This comprehensive book communicates the recent advances and exciting potential for the expanding area of plant biotechnology and is divided into six sections. The first three sections look at the current status of the field, and advances in plant platforms and strategies for improving yields, downstream processing, and controlling post-translational modifications of plant-made recombinant proteins. Section four reviews high-value industrial and pharmacological proteins that are successfully being produced in established and emerging plant platforms. The fifth section looks at regulatory challenges facing the expansion of the field. The final section turns its focus toward small molecule therapeutics, drug screening, plant specialized metabolites, and plants as model organisms to study human disease processes. Molecular Pharming: Applications, Challenges and Emerging Areas offers in-depth coverage of molecular biology of plant expression systems and manipulation of glycosylation processes in plants; plant platforms, subcellular targeting, recovery, and downstream processing; plant-derived protein pharmaceuticals and case studies; regulatory issues; and emerging areas. It is a valuable resource for researchers that are in the field of plant molecular pharming, as well as for those conducting basic research in gene expression, protein quality control, and other subjects relevant to molecular and cellular biology. Broad ranging coverage of a key area of plant biotechnology Describes efforts to produce pharmaceutical and industrial proteins in plants Provides reviews of recent advances and technology breakthroughs Assesses realities of regulatory and cost hurdles Forward looking with coverage of small molecule technologies and the use of plants as models of human disease processes Providing wide-ranging and unique coverage, Molecular Pharming: Applications, Challenges and Emerging Areas will be of great interest to the plant science, plant biotechnology, protein science, and pharmacological communities.