Transition Engineering


Book Description

Transition Engineering: Building a Sustainable Future examines new strategies emerging in response to the mega-issues of global climate change, decline in world oil supply, scarcity of key industrial minerals, and local environmental constraints. These issues pose challenges for organizations, businesses, and communities, and engineers will need to begin developing ideas and projects to implement the transition of engineered systems. This work presents a methodology for shifting away from unsustainable activities. Teaching the Transition Engineering approach and methodology is the focus of the text, and the concept is presented in a way that engineers can begin applying it in their work.




Understanding the Educational and Career Pathways of Engineers


Book Description

Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce. This report explores the characteristics and career choices of engineering graduates, particularly those with a BS or MS degree, who constitute the vast majority of degreed engineers, as well as the characteristics of those with non-engineering degrees who are employed as engineers in the United States. It provides insight into their educational and career pathways and related decision making, the forces that influence their decisions, and the implications for major elements of engineering education-to-workforce pathways.




Educating the Engineer of 2020


Book Description

Educating the Engineer of 2020 is grounded by the observations, questions, and conclusions presented in the best-selling book The Engineer of 2020: Visions of Engineering in the New Century. This new book offers recommendations on how to enrich and broaden engineering education so graduates are better prepared to work in a constantly changing global economy. It notes the importance of improving recruitment and retention of students and making the learning experience more meaningful to them. It also discusses the value of considering changes in engineering education in the broader context of enhancing the status of the engineering profession and improving the public understanding of engineering. Although certain basics of engineering will not change in the future, the explosion of knowledge, the global economy, and the way engineers work will reflect an ongoing evolution. If the United States is to maintain its economic leadership and be able to sustain its share of high-technology jobs, it must prepare for this wave of change.




A Case for Climate Engineering


Book Description

A leading scientist argues that we must consider deploying climate engineering technology to slow the pace of global warming. Climate engineering—which could slow the pace of global warming by injecting reflective particles into the upper atmosphere—has emerged in recent years as an extremely controversial technology. And for good reason: it carries unknown risks and it may undermine commitments to conserving energy. Some critics also view it as an immoral human breach of the natural world. The latter objection, David Keith argues in A Scientist's Case for Climate Engineering, is groundless; we have been using technology to alter our environment for years. But he agrees that there are large issues at stake. A leading scientist long concerned about climate change, Keith offers no naïve proposal for an easy fix to what is perhaps the most challenging question of our time; climate engineering is no silver bullet. But he argues that after decades during which very little progress has been made in reducing carbon emissions we must put this technology on the table and consider it responsibly. That doesn't mean we will deploy it, and it doesn't mean that we can abandon efforts to reduce greenhouse gas emissions. But we must understand fully what research needs to be done and how the technology might be designed and used. This book provides a clear and accessible overview of what the costs and risks might be, and how climate engineering might fit into a larger program for managing climate change.




Environmental Engineering for the 21st Century


Book Description

Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.




The Global Engineers


Book Description

The Global Engineers: Building a Safe and Equitable World Together, is inspired by the opportunities for engineers to contribute to global prosperity. This book presents a vision for Global Engineering, and identifies that engineers should be concerned with the unequal and unjust distribution of access to basic services, such as water, sanitation, energy, food, transportation, and shelter. As engineers, we should place an emphasis on identifying the drivers, determinants, and solutions to increasing equitable access to reliable services. Global Engineering envisions a world where everyone has safe water, sanitation, energy, food, shelter, and infrastructure, and can live in health, dignity, and prosperity. This book seeks to examine the role and ultimately the impact of engineers in global development. Engineers are solutions-oriented people. We enjoy the opportunity to identify a product or need, and design appropriate technical solutions. However, the structural and historical barriers to global prosperity requires that Engineers focus more broadly on improving the tools and practice of poverty reduction and that we include health, economics, policy, and governance as relevant expertise with which we are conversant. Engineers must become activists and advocates, rejecting ahistorical technocratic approaches that suggest poverty can be solved without justice or equity. Engineers must leverage our professional skills and capacity to generate evidence and positive impact toward rectifying inequalities and improving lives. Half of this book is dedicated to profiles of engineers and other technical professionals who have dedicated their careers to searching for solutions to global development challenges. These stories introduce the reader to the diverse opportunities and challenges in Global Engineering.




Software Engineering at Google


Book Description

Today, software engineers need to know not only how to program effectively but also how to develop proper engineering practices to make their codebase sustainable and healthy. This book emphasizes this difference between programming and software engineering. How can software engineers manage a living codebase that evolves and responds to changing requirements and demands over the length of its life? Based on their experience at Google, software engineers Titus Winters and Hyrum Wright, along with technical writer Tom Manshreck, present a candid and insightful look at how some of the world’s leading practitioners construct and maintain software. This book covers Google’s unique engineering culture, processes, and tools and how these aspects contribute to the effectiveness of an engineering organization. You’ll explore three fundamental principles that software organizations should keep in mind when designing, architecting, writing, and maintaining code: How time affects the sustainability of software and how to make your code resilient over time How scale affects the viability of software practices within an engineering organization What trade-offs a typical engineer needs to make when evaluating design and development decisions




The Engineer of 2020


Book Description

To enhance the nation's economic productivity and improve the quality of life worldwide, engineering education in the United States must anticipate and adapt to the dramatic changes of engineering practice. The Engineer of 2020 urges the engineering profession to recognize what engineers can build for the future through a wide range of leadership roles in industry, government, and academia-not just through technical jobs. Engineering schools should attract the best and brightest students and be open to new teaching and training approaches. With the appropriate education and training, the engineer of the future will be called upon to become a leader not only in business but also in nonprofit and government sectors. The book finds that the next several decades will offer more opportunities for engineers, with exciting possibilities expected from nanotechnology, information technology, and bioengineering. Other engineering applications, such as transgenic food, technologies that affect personal privacy, and nuclear technologies, raise complex social and ethical challenges. Future engineers must be prepared to help the public consider and resolve these dilemmas along with challenges that will arise from new global competition, requiring thoughtful and concerted action if engineering in the United States is to retain its vibrancy and strength.




Engineering in Society


Book Description

The National Research Council's Panel on Engineering Interactions with Society was formed to examine the functioning of the engineering profession in the context of, and in relation to, American society. This document presents the findings of the panel. The panel's inquiry was twofold. First, it examined the impact that engineering and technology development has had on the nation, including the impact on societal demands, values, and perceptions on engineering. Next, the panel attempted to assess the structure and development of the engineering profession, and the adaptability of the profession in meeting current and future national needs. Chapters in the document deal with: (1) the evolution of American engineering; (2) the present era (managing change in the information age); (3) engineering and social dynamics; (4) maintaining flexibility in an age of stress and rapid change; and (5) conclusions and recommendations. Appendices include 23 references and a 16-item bibliography, along with an article prepared by Arthur L. Donovan, entitled "Engineering in an Increasingly Complex Society: Historical Perspectives on Education, Practice, and Adaptation in American Engineering." (TW)




Flexibility in Engineering Design


Book Description

A guide to using the power of design flexibility to improve the performance of complex technological projects, for designers, managers, users, and analysts. Project teams can improve results by recognizing that the future is inevitably uncertain and that by creating flexible designs they can adapt to eventualities. This approach enables them to take advantage of new opportunities and avoid harmful losses. Designers of complex, long-lasting projects—such as communication networks, power plants, or hospitals—must learn to abandon fixed specifications and narrow forecasts. They need to avoid the “flaw of averages,” the conceptual pitfall that traps so many designs in underperformance. Failure to allow for changing circumstances risks leaving significant value untapped. This book is a guide for creating and implementing value-enhancing flexibility in design. It will be an essential resource for all participants in the development and operation of technological systems: designers, managers, financial analysts, investors, regulators, and academics. The book provides a high-level overview of why flexibility in design is needed to deliver significantly increased value. It describes in detail methods to identify, select, and implement useful flexibility. The book is unique in that it explicitly recognizes that future outcomes are uncertain. It thus presents forecasting, analysis, and evaluation tools especially suited to this reality. Appendixes provide expanded explanations of concepts and analytic tools.