Femtosecond Laser Micromachining


Book Description

Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.




Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications


Book Description

Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensional microfluidics, micromechanics, microelectronics and microoptics embedded in the glass. Further, these microcomponents can be easily integrated in a single glass microchip by the simple procedure using the femtosecond laser. Thus, the femtosecond laser processing provides some advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabrication of microfluidic, optofludic and lab-on-a-chip devices and thereby many researches on this topic are currently being carried out. This book presents a comprehensive review on the state of the art and future prospects of femtosecond laser processing for fabrication of microfluidics and optofludics including principle of femtosecond laser processing, detailed fabrication procedures of each microcomponent and practical applications to biochemical analysis.




Laser Precision Microfabrication


Book Description

Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.




Femtochemistry and Femtobiology


Book Description

This book reflects the heights of knowledge of ultrafast chemical processes attained in these early years of the 21st century : the latest research in femtosecond and picosecond molecular processes in Chemistry and Biology, carried out around the world, is described here in more than 110 articles. The results were presented and discussed at the VIth International Conference on Femtochemistry, in Paris, France, from July 6 to July 10, 2003. The articles published here were reviewed by referees selected from specialists in the Femtochemistry community, guaranteeing a collective responsability for the quality of the research reported in the next 564 pages. Femtochemistry is an ever-growing field, where new research areas are constantly opening up, and one which both stimulates and accompanies the development of ultrafast technologies. The increasing interest in femtobiology and chemistry at the frontier with biology is an obvious indicator of the present impact of life sciences in our society. New materials and reactions at surfaces are also some of the relatively new topics that promise rapid developments. New methodologies and technologies for probing and following in real time molecular dynamical phenomena have appeared within the last ten years or so. These methods, based on multidimensional IR spectroscopies, ultrafast X-ray and electron diffraction techniques, are well represented in this book. Of ever-improving performance, they are now applied to the characterization of structural dynamics of an increasing number of chemical and biological systems. This book reports the state of research in Femtochemistry and Femtobiology presented at Paris, at the Maison de la Chimie, in July 2003, representing the tenth anniversary of the conference. * Overview of the most recent research on ultrafast events * Application of new methodologies on chemical and biological systems * Contributions by key players in the field




Laser Ablation in Liquids


Book Description

This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applic




Micro-Manufacturing Technologies and Their Applications


Book Description

This book provides in-depth theoretical and practical information on recent advances in micro-manufacturing technologies and processes, covering such topics as micro-injection moulding, micro-cutting, micro-EDM, micro-assembly, micro-additive manufacturing, moulded interconnected devices, and microscale metrology. It is designed to provide complementary material for the related e-learning platform on micro-manufacturing developed within the framework of the Leonardo da Vinci project 2013-3748/542424: MIMAN-T: Micro-Manufacturing Training System for SMEs. The book is mainly addressed to technicians and prospective professionals in the sector and will serve as an easily usable tool to facilitate the translation of micro-manufacturing technologies into tangible industrial benefits. Numerous examples are included to assist readers in learning and implementing the described technologies. In addition, an individual chapter is devoted to technological foresight, addressing market analysis and business models for micro-manufacturers.




Extreme Photonics & Applications


Book Description

"Extreme Photonics & Applications" arises from the 2008 NATO Advanced Study Institute in Laser Control & Monitoring in New Materials, Biomedicine, Environment, Security and Defense. Leading experts in the manipulation of light offered by recent advances in laser physics and nanoscience were invited to give lectures in their fields of expertise and participate in discussions on current research, applications and new directions. The sum of their contributions to this book is a primer for the state of scientific knowledge and the issues within the subject of photonics taken to the extreme frontiers: molding light at the ultra-finest scales, which represents the beginning of the end to limitations in optical science for the benefit of 21st Century technological societies. Laser light is an exquisite tool for physical and chemical research. Physicists have recently developed pulsed lasers with such short durations that one laser shot takes the time of one molecular vibration or one electron rotation in an atom, which makes it possible to observe their internal electronic structure, thereby enabling the study of physical processes and new chemical reactions. In parallel, advances in micro- and nano-structured photonic materials allow the precise manipulation of light on its natural scale of a wavelength. Photonic crystals, plasmons and related metamaterials - composed of subwavelength nanostructures - permit the manipulation of their dispersive properties and have allowed the experimental confirmation of bizarre new effects such as slow light and negative refraction. These advances open a vista on a new era in which it is possible to build lasers and engineer materials to control and use photons as precisely as it is already possible to do with electrons. http://www.photonics.uottawa.ca/nato-asi-2008/




Handbook of Laser Micro- and Nano-Engineering


Book Description

This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.




Advances in Micro and Nano Manufacturing and Surface Engineering


Book Description

This volume presents research papers on micro and nano manufacturing and surface engineering which were presented during the 7th International and 28th All India Manufacturing Technology, Design and Research conference 2018 (AIMTDR 2018). The papers discuss the latest advances in miniature manufacturing, the machining of miniature components and features as well as improvement of surface properties. This volume will be of interest to academicians, researchers, and practicing engineers alike.




Harnessing Light


Book Description

Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.