Enhanced Pool Boiling of Water with Open Microchannels Over Cylindrical Tubes


Book Description

"Pool boiling is a stable and efficient method for transferring large quantities of heat. It is employed in a wide range of applications, including steam generation in boilers, petrochemical, pharmaceutical, cryogenic and many other industrial processes. The objective of this work was to investigate the augmentation in the boiling heat transfer rates with an array of open microchannels over a cylindrical tube. In order to develop high performance surfaces, rectangular and V-groove cross-sectional geometry microchannels were fabricated and tested over tubular test sections. These microchannels were manufactured in two configurations: circumferentially around the test section and axially along the length. The effects of the microchannel geometric parameters on pool boiling performance were studied under horizontal and vertical orientations. Twenty uniquely modified microchannel surfaces were designed, fabricated and tested. The best performance was obtained with a circumferential rectangular microchannel test section in the horizontal orientation. A maximum heat transfer coefficient of 129 kW/m2*K was achieved at a heat flux of 1095 kW/m2, while maintaining a wall superheat of 8.5 K. The overall enhancement factors obtained at the maximum heat flux condition, ranged between 1.9 and 3.4 in the horizontal orientation, and 2.1 and 3.1 in the vertical orientation. The critical heat flux for almost all the designed test surfaces was increased by a factor of at least 1.6 over a plain tube. Area normalized results indicated that factors other than area enhancement are responsible for augmenting the heat transfer performance. High-speed videography of bubbles nucleating, growing and departing from the heated surface was performed. The bubble behavior over these open microchannels was analyzed to understand the fundamental mechanism during pool boiling. The bubble interactions in and over the open microchannels, and the liquid rewetting phenomenon greatly influence the heat transfer performance for these surface."--Abstract.




Enhancement of Pool Boiling Heat Transfer Using Thermally-conductive Microporous Coating Techniques


Book Description

The present research is an experimental study of the enhancement of boiling heat transfer using microporous coating techniques. The current research is divided into four major phases. During the first phase, the effects of different metal particle sizes in the coating compound for thermally non-conductive microporous coating on pool boiling performance of refrigerants and water are investigated. The test surfaces were solid copper blocks with 1-cm2 base at atmospheric pressure in saturated FC-72, R-123, and water. Results showed that the surface treatment by non-conductive microporous coating significantly enhanced both nucleate boiling and critical heat flux of FC-72 and R-123. However, the enhancement of boiling performance for water was merely shown. In the second phase, thermally conductive microporous coatings to enhance boiling performance of water were developed. The first phase motivated efforts to fabricate microporous coatings with conducting binder options. The second phase was stemmed from an effort to combine the advantages of both a mixture batch type (inexpensive & easy process) and sintering/machining method (low thermal resistance of conduction). Two categories of surface treatment processes were considered in the current research. The first can be achieved by a chemical process, Multi-Staged Electroplating (MSE), which uses electricity in a chemical bath to deposit a microporous structure on the surface. The second is a soldering process, Multi-Temperature Soldering Process (MTSP), which binds the metal particles to generate optimum microporous cavities. Scanning Electron Microscope (SEM) and optical microscope images were obtained for thermally conductive microporous coated surfaces. During the third phase, the pool boiling performance of developed MSE and MTSP from second phase was confirmed for water. Results showed that the MSE and MTSP augmented the boiling performance not only for refrigerants but also for water significantly compared to non-conductive microporous coatings. Further investigation for possible future industrial applications of microporous coatings, such as indirect cooling for electronic chips, nanofluids for high power generation industries, and freezing problem of water, were conducted in the final phase.




Pool Boiling Enhancement Through Improved Liquid Supply Pathways Over Open Microchannels


Book Description

"Boiling is an efficacious mode of heat transfer and is utilized in various energy conversions, heat exchange systems and in cooling of high energy density electronic components. Fundamental pool boiling mechanisms suggest that liquid rewetting on a heated surface is a key factor in delaying critical heat flux (CHF) for enhancing pool boiling performance. In this study, pool boiling enhancement is achieved by providing improved liquid supply pathways to nucleation sites in open microchannels. A two part study is conducted to enhance pool boiling performance of open microchannels. Micromachined and porous surfaces are identified as enhancement techniques in Part-I and Part-II respectively. The results obtained in part-I showed significant improvement in the pool boiling performance when tested with water and FC-87. In part-II of the study, porous coatings are deposited on the boiling surface of an open parallel microchannel fin tops, channel bottoms and both, and individually investigated for their pool boiling performance. The best performing surface was with porous coatings throughout the geometry and had a CHF of 313 W/cm2 at a wall superheat of 7.5 °C. High speed images for the three surfaces show that bubble nucleation occurred at the location of porous deposits. Furthermore, additional nucleation sites are identified as the main contributing factor in the best performing surface which had an enhancement of 150% in CHF when compared to a plain surface. Efficient liquid recirculation provided by open microchannels also contributed to improved microconvection in the channels."--Abstract.




Heat Transfer and Fluid Flow in Minichannels and Microchannels


Book Description

&Quot;This book explores flow through passages with hydraulic diameters from about 1 [mu]m to 3 mm, covering the range of minichannels and microchannels. Design equations along with solved examples and practice problems are also included to serve the needs of practicing engineers and students in a graduate course."--BOOK JACKET.




Handbook of Thermal Science and Engineering


Book Description

This Handbook provides researchers, faculty, design engineers in industrial R&D, and practicing engineers in the field concise treatments of advanced and more-recently established topics in thermal science and engineering, with an important emphasis on micro- and nanosystems, not covered in earlier references on applied thermal science, heat transfer or relevant aspects of mechanical/chemical engineering. Major sections address new developments in heat transfer, transport phenomena, single- and multiphase flows with energy transfer, thermal-bioengineering, thermal radiation, combined mode heat transfer, coupled heat and mass transfer, and energy systems. Energy transport at the macro-scale and micro/nano-scales is also included. The internationally recognized team of authors adopt a consistent and systematic approach and writing style, including ample cross reference among topics, offering readers a user-friendly knowledgebase greater than the sum of its parts, perfect for frequent consultation. The Handbook of Thermal Science and Engineering is ideal for academic and professional readers in the traditional and emerging areas of mechanical engineering, chemical engineering, aerospace engineering, bioengineering, electronics fabrication, energy, and manufacturing concerned with the influence thermal phenomena.













Two-Phase Heat Transfer Enhancement


Book Description

This Brief concerns heat transfer and pressure drop in heat transfer enhancement for boiling and condensation. The authors divide their topic into six areas: abrasive treatment and coatings, combined structured and porous surfaces, basic principles of boiling mechanism, vapor space condensation, convective vaporization, and forced condensation inside tubes. Within this framework, the book examines range of specific phenomena including abrasive treatment, open grooves, 3D cavities, etched surfaces, electroplating, pierced 3D cover sheets, attached wire and screen promoters, non-wetting coatings, oxide and ceramic coatings, porous surfaces, structured surfaces (integral roughness), combined structured and porous surfaces, composite surfaces, single-tube pool boiling tests, theoretical fundamentals like liquid superheat, effect of cavity shape and contact angle on superheat, entrapment of vapor in cavities, nucleation at a surface cavity, effect of dissolved gases, bubble departure diameter, bubble dynamics, boiling hysteresis and orientation effects, basic principles of boiling mechanism, visualization and mechanism of boiling in subsurface tunnels, and Chien and Webb parametric boiling studies.