Entanglement in Spin Chains


Book Description

This book covers recent developments in the understanding, quantification, and exploitation of entanglement in spin chain models from both condensed matter and quantum information perspectives. Spin chain models are at the foundation of condensed matter physics and quantum information technologies and elucidate many fundamental phenomena such as information scrambling, quantum phase transitions, and many-body localization. Moreover, many quantum materials and emerging quantum devices are well described by spin chains. Comprising accessible, self-contained chapters written by leading researchers, this book is essential reading for graduate students and researchers in quantum materials and quantum information. The coverage is comprehensive, from the fundamental entanglement aspects of quantum criticality, non-equilibrium dynamics, classical and quantum simulation of spin chains through to their experimental realizations, and beyond into machine learning applications.




The Bethe Wavefunction


Book Description

Michel Gaudin's book La fonction d'onde de Bethe is a uniquely influential masterpiece on exactly solvable models of quantum mechanics and statistical physics. Available in English for the first time, this translation brings his classic work to a new generation of graduate students and researchers in physics. It presents a mixture of mathematics interspersed with powerful physical intuition, retaining the author's unmistakably honest tone. The book begins with the Heisenberg spin chain, starting from the coordinate Bethe Ansatz and culminating in a discussion of its thermodynamic properties. Delta-interacting bosons (the Lieb-Liniger model) are then explored, and extended to exactly solvable models associated to a reflection group. After discussing the continuum limit of spin chains, the book covers six- and eight-vertex models in extensive detail, from their lattice definition to their thermodynamics. Later chapters examine advanced topics such as multi-component delta-interacting systems, Gaudin magnets and the Toda chain.




Memorial Volume for Ludwig Faddeev


Book Description

Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics. Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots. Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including "Faddeev's equations" and "Faddeev's Green function" in scattering theory, "Faddeev-Popov ghosts" and "Faddeev-Popov determinant" in gauge theories, "Gardner-Faddeev-Zakharov bracket" for the KdV equation, "Faddeev-Zamolodchikov algebra" in quantum integrable systems, "Faddeev-Reshetikhin-Takhtajan construction" in the theory of quantum groups, knotted solitons in the "Skyrme-Faddeev model" and many others. Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others. A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang.




Quantum Phase Transitions in Transverse Field Models


Book Description

This book establishes the fundamental connections between the physics of quantum phase transitions and the technological promise of quantum information.




An Introduction to Quantum Spin Systems


Book Description

The topic of lattice quantum spin systems is a fascinating and by now well established branch of theoretical physics. Based on a set of lectures, this book has a level of detail missing from others, and guides the reader through the fundamentals of the field.




Tensor Network Contractions


Book Description

Tensor network is a fundamental mathematical tool with a huge range of applications in physics, such as condensed matter physics, statistic physics, high energy physics, and quantum information sciences. This open access book aims to explain the tensor network contraction approaches in a systematic way, from the basic definitions to the important applications. This book is also useful to those who apply tensor networks in areas beyond physics, such as machine learning and the big-data analysis. Tensor network originates from the numerical renormalization group approach proposed by K. G. Wilson in 1975. Through a rapid development in the last two decades, tensor network has become a powerful numerical tool that can efficiently simulate a wide range of scientific problems, with particular success in quantum many-body physics. Varieties of tensor network algorithms have been proposed for different problems. However, the connections among different algorithms are not well discussed or reviewed. To fill this gap, this book explains the fundamental concepts and basic ideas that connect and/or unify different strategies of the tensor network contraction algorithms. In addition, some of the recent progresses in dealing with tensor decomposition techniques and quantum simulations are also represented in this book to help the readers to better understand tensor network. This open access book is intended for graduated students, but can also be used as a professional book for researchers in the related fields. To understand most of the contents in the book, only basic knowledge of quantum mechanics and linear algebra is required. In order to fully understand some advanced parts, the reader will need to be familiar with notion of condensed matter physics and quantum information, that however are not necessary to understand the main parts of the book. This book is a good source for non-specialists on quantum physics to understand tensor network algorithms and the related mathematics.




Physical and Mathematical Aspects of Symmetries


Book Description

This proceedings records the 31st International Colloquium on Group Theoretical Methods in Physics (“Group 31”). Plenary-invited articles propose new approaches to the moduli spaces in gauge theories (V. Pestun, 2016 Weyl Prize Awardee), the phenomenology of neutrinos in non-commutative space-time, the use of Hardy spaces in quantum physics, contradictions in the use of statistical methods on complex systems, and alternative models of supersymmetry. This volume’s survey articles broaden the colloquia’s scope out into Majorana neutrino behavior, the dynamics of radiating charges, statistical pattern recognition of amino acids, and a variety of applications of gauge theory, among others. This year’s proceedings further honors Bertram Kostant (2016 Wigner Medalist), as well as S.T. Ali and L. Boyle, for their life-long contributions to the math and physics communities. The aim of the ICGTMP is to provide a forum for physicists, mathematicians, and scientists of related disciplines who develop or apply methods in group theory to share their research. The 31st ICGTMP was held in Rio de Janeiro, Brazil, from June 19th to June 25th, 2016. This was the first time that a colloquium of the prestigious and traditional ICGTMP series (which started in 1972 in Marseille, France) took place in South America. (The history of the colloquia can be found at http://icgtmp.blogs.uva.es/)




Quantum Machine Learning


Book Description

Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it focuses on providing a synthesis that explains the most important machine learning algorithms in a quantum framework. Theoretical advances in quantum computing are hard to follow for computer scientists, and sometimes even for researchers involved in the field. The lack of a step-by-step guide hampers the broader understanding of this emergent interdisciplinary body of research. Quantum Machine Learning sets the scene for a deeper understanding of the subject for readers of different backgrounds. The author has carefully constructed a clear comparison of classical learning algorithms and their quantum counterparts, thus making differences in computational complexity and learning performance apparent. This book synthesizes of a broad array of research into a manageable and concise presentation, with practical examples and applications. - Bridges the gap between abstract developments in quantum computing with the applied research on machine learning - Provides the theoretical minimum of machine learning, quantum mechanics, and quantum computing - Gives step-by-step guidance to a broader understanding of this emergent interdisciplinary body of research




Quantum Phase Transitions


Book Description

Describing the physical properties of quantum materials near critical points with long-range many-body quantum entanglement, this book introduces readers to the basic theory of quantum phases, their phase transitions and their observable properties. This second edition begins with a new section suitable for an introductory course on quantum phase transitions, assuming no prior knowledge of quantum field theory. It also contains several new chapters to cover important recent advances, such as the Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quantum magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical quantum-critical phase diagram at non-zero temperatures. Finally, a variety of more complex models are explored. This book is ideal for graduate students and researchers in condensed matter physics and particle and string theory.




Quantum State Transfer and Network Engineering


Book Description

Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.