Entropy Optimization and Mathematical Programming


Book Description

Entropy optimization is a useful combination of classical engineering theory (entropy) with mathematical optimization. The resulting entropy optimization models have proved their usefulness with successful applications in areas such as image reconstruction, pattern recognition, statistical inference, queuing theory, spectral analysis, statistical mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio investment, information analysis, and linear and nonlinear programming. While entropy optimization has been used in different fields, a good number of applicable solution methods have been loosely constructed without sufficient mathematical treatment. A systematic presentation with proper mathematical treatment of this material is needed by practitioners and researchers alike in all application areas. The purpose of this book is to meet this need. Entropy Optimization and Mathematical Programming offers perspectives that meet the needs of diverse user communities so that the users can apply entropy optimization techniques with complete comfort and ease. With this consideration, the authors focus on the entropy optimization problems in finite dimensional Euclidean space such that only some basic familiarity with optimization is required of the reader.




Entropy Optimization Principles with Applications


Book Description

This senior-level textbook on entropy provides a conceptual framework for the study of probabilistic systems with its elucidation of three key concepts - Shannon's information theory, Jaynes' maximum entropy principle and Kullback's minimum cross-entropy principle.




Entropy Measures, Maximum Entropy Principle and Emerging Applications


Book Description

The last two decades have witnessed an enormous growth with regard to ap plications of information theoretic framework in areas of physical, biological, engineering and even social sciences. In particular, growth has been spectac ular in the field of information technology,soft computing,nonlinear systems and molecular biology. Claude Shannon in 1948 laid the foundation of the field of information theory in the context of communication theory. It is in deed remarkable that his framework is as relevant today as was when he 1 proposed it. Shannon died on Feb 24, 2001. Arun Netravali observes "As if assuming that inexpensive, high-speed processing would come to pass, Shan non figured out the upper limits on communication rates. First in telephone channels, then in optical communications, and now in wireless, Shannon has had the utmost value in defining the engineering limits we face". Shannon introduced the concept of entropy. The notable feature of the entropy frame work is that it enables quantification of uncertainty present in a system. In many realistic situations one is confronted only with partial or incomplete information in the form of moment, or bounds on these values etc. ; and it is then required to construct a probabilistic model from this partial information. In such situations, the principle of maximum entropy provides a rational ba sis for constructing a probabilistic model. It is thus necessary and important to keep track of advances in the applications of maximum entropy principle to ever expanding areas of knowledge.




Entropy and Energy Dissipation in Water Resources


Book Description

Since the landmark contributions of C. E. Shannon in 1948, and those of E. T. Jaynes about a decade later, applications of the concept of entropy and the principle of maximum entropy have proliterated in science and engineering. Recent years have witnessed a broad range of new and exciting developments in hydrology and water resources using the entropy concept. These have encompassed innovative methods for hydrologic network design, transfer of information, flow forecasting, reliability assessment for water distribution systems, parameter estimation, derivation of probability distributions, drainage-network analysis, sediment yield modeling and pollutant loading, bridge-scour analysis, construction of velocity profiles, comparative evaluation of hydrologic models, and so on. Some of these methods hold great promise for advancement of engineering practice, permitting rational alternatives to conventional approaches. On the other hand, the concepts of energy and energy dissipation are being increasingly applied to a wide spectrum of problems in environmental and water resources. Both entropy and energy dissipation have their origin in thermodynamics, and are related concepts. Yet, many of the developments using entropy seem to be based entirely on statistical interpretation and have seemingly little physical content. For example, most of the entropy-related developments and applications in water resources have been based on the information-theoretic interpretation of entropy. We believe if the power of the entropy concept is to be fully realized, then its physical basis has to be established.




Statistical Topics and Stochastic Models for Dependent Data with Applications


Book Description

This book is a collective volume authored by leading scientists in the field of stochastic modelling, associated statistical topics and corresponding applications. The main classes of stochastic processes for dependent data investigated throughout this book are Markov, semi-Markov, autoregressive and piecewise deterministic Markov models. The material is divided into three parts corresponding to: (i) Markov and semi-Markov processes, (ii) autoregressive processes and (iii) techniques based on divergence measures and entropies. A special attention is payed to applications in reliability, survival analysis and related fields.




Entropy Theory and its Application in Environmental and Water Engineering


Book Description

Entropy Theory and its Application in Environmental and Water Engineering responds to the need for a book that deals with basic concepts of entropy theory from a hydrologic and water engineering perspective and then for a book that deals with applications of these concepts to a range of water engineering problems. The range of applications of entropy is constantly expanding and new areas finding a use for the theory are continually emerging. The applications of concepts and techniques vary across different subject areas and this book aims to relate them directly to practical problems of environmental and water engineering. The book presents and explains the Principle of Maximum Entropy (POME) and the Principle of Minimum Cross Entropy (POMCE) and their applications to different types of probability distributions. Spatial and inverse spatial entropy are important for urban planning and are presented with clarity. Maximum entropy spectral analysis and minimum cross entropy spectral analysis are powerful techniques for addressing a variety of problems faced by environmental and water scientists and engineers and are described here with illustrative examples. Giving a thorough introduction to the use of entropy to measure the unpredictability in environmental and water systems this book will add an essential statistical method to the toolkit of postgraduates, researchers and academic hydrologists, water resource managers, environmental scientists and engineers. It will also offer a valuable resource for professionals in the same areas, governmental organizations, private companies as well as students in earth sciences, civil and agricultural engineering, and agricultural and rangeland sciences. This book: Provides a thorough introduction to entropy for beginners and more experienced users Uses numerous examples to illustrate the applications of the theoretical principles Allows the reader to apply entropy theory to the solution of practical problems Assumes minimal existing mathematical knowledge Discusses the theory and its various aspects in both univariate and bivariate cases Covers newly expanding areas including neural networks from an entropy perspective and future developments.




Neutrosophic Entropy Measures For The Normal Distribution: Theory And Applications


Book Description

Entropy is a measure of uncertainty and often used in information theory to determine the precise testimonials about unclear situations. Different entropy measures available in the literature are based on the exact form of the observations and lacks in dealing with the interval-valued data. The interval-valued data often arises from the situations having ambiguity, imprecise, unclear, indefinite, or vague states of the experiment and is called neutrosophic data. In this research modified forms of different entropy measures for normal probability distribution have been proposed by considering the neutrosophic form data. The performance of the proposed neutrosophic entropies for normal distribution has been assessed via a simulation study. Moreover, the proposed measures are also applied to two real data sets for their wide applicability.




Entropy Optimization and Mathematical Programming


Book Description

Entropy optimization is a useful combination of classical engineering theory (entropy) with mathematical optimization. The resulting entropy optimization models have proved their usefulness with successful applications in areas such as image reconstruction, pattern recognition, statistical inference, queuing theory, spectral analysis, statistical mechanics, transportation planning, urban and regional planning, input-output analysis, portfolio investment, information analysis, and linear and nonlinear programming. While entropy optimization has been used in different fields, a good number of applicable solution methods have been loosely constructed without sufficient mathematical treatment. A systematic presentation with proper mathematical treatment of this material is needed by practitioners and researchers alike in all application areas. The purpose of this book is to meet this need. Entropy Optimization and Mathematical Programming offers perspectives that meet the needs of diverse user communities so that the users can apply entropy optimization techniques with complete comfort and ease. With this consideration, the authors focus on the entropy optimization problems in finite dimensional Euclidean space such that only some basic familiarity with optimization is required of the reader.




Encyclopedia of Optimization


Book Description

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".




Stochastic and Statistical Methods in Hydrology and Environmental Engineering


Book Description

International experts from around the globe present a rich variety of intriguing developments in time series analysis in hydrology and environmental engineering. Climatic change is of great concern to everyone and significant contributions to this challenging research topic are put forward by internationally renowned authors. A range of interesting applications in hydrological forecasting are given for case studies in reservoir operation in North America, Asia and South America. Additionally, progress in entropy research is described and entropy concepts are applied to various water resource systems problems. Neural networks are employed for forecasting runoff and water demand. Moreover, graphical, nonparametric and parametric trend analyses methods are compared and applied to water quality time series. Other topics covered in this landmark volume include spatial analyses, spectral analyses and different methods for stream-flow modelling. Audience The book constitutes an invaluable resource for researchers, teachers, students and practitioners who wish to be at the forefront of time series analysis in the environmental sciences.