Envelope Amplifier Design for Wireless Base-station Power Amplifiers


Book Description

In order to deliver high data rates, modern wireless communication systems transmit complex modulated signals with high peak-to-average ratio, which demands wide bandwidth and stringent linearity performance for power amplifiers. To satisfy spectral mask regulations and achieve adequate error vector magnitude, power amplifiers typically operate at 6 to 10 dB back-off from the maximum output power, leading to low efficiency. To overcome the low efficiency problem, the envelope tracking power amplifier architecture has been proposed for this type of application due to its feature of high efficiency over a wide power range. The overall efficiency of an envelope tracking system relies not only on performance of the RF power amplifier but also on that of an envelope amplifier that provides a dynamically varying power supply voltage. This dissertation focuses on envelope amplifier design for efficiency enhancement of envelope tracking power amplifiers. First, the envelope tracking power amplifier architecture is analyzed, and the efficiency of a RF transistor in the envelope tracking technique is described. Then envelope amplifier behavior is investigated and a general purpose simulator is developed for analyzing and designing an envelope amplifier. Power loss and efficiency of the envelope amplifier is analyzed and compared with experimental results. The design of envelope amplifiers for high voltage (> 30 V) envelope tracking applications is described. A high voltage envelope amplifier is designed, implemented and verified. The overall envelope tracking system employing a GaN-HEMT RF transistor is demonstrated. Finally, a new architecture is developed for the efficiency enhancement of envelope amplifiers, using a digitally assisted controller design. Digital control is utilized to mitigate delay in the control loop inside the envelope amplifier, leading to lower overall power dissipation. A novel envelope amplifier architecture with dual-switcher stages based on the digitally-assisted control strategy is proposed, designed and implemented. The strategy is demonstrated to improve the efficiency of envelope amplifier as well as the system overall efficiency. The resulting performance of envelope tracking system employing a GaAs high voltage HBT with a single carrier W-CDMA input demonstrated state-of-the-art efficiency with good linearity performance.




Envelope Amplifier for Broadband Base-station Envelope Tracking Power Amplifier


Book Description

Envelope tracking (ET), which is a dynamic supply control technology to realize high efficiency power amplifiers, is a promising approach for base-station transmitters of the future. The envelope amplifier (EA) in ET systems provides a non-constant modulated power supply to the RF transistor. It is challenging to design so that it is both broadband and high efficiency, while meeting the stringent linearity requirements for high peak-to-average ratio signals in modern wireless communication systems. This thesis focuses on EA design and implementation for efficiency enhancement of ET systems with broadband envelope input signals. First, the ET system architecture is analyzed, and the efficiencies of RF transistors and envelope amplifiers are described. Secondly, the principles of the EA operation are investigated, and each circuit stage is carefully designed for broadband signals. Then, an EA model, including the RF transistor load, is developed in PSpice, and many simulations are described in order to better analyze and design the broadband EA for high efficiency. After the design, a broadband EA is implemented on a PCB board. The testing with constant resistive loads is carried out to verify the function and measure the efficiencies of 5 MHz WCDMA and 20 MHz LTE-A downlink envelope signals. Finally, tests on the whole ET system are performed, and the overall drain and power added efficiencies are tabulated. For this broadband envelope amplifier, the efficiency for a 5 MHz WCDMA input signal is above 75%, and for 20 MHz LTE-A, it works robustly with an efficiency of 62%.




Design and Control of RF Power Amplifiers


Book Description

Design and Control of RF Power Amplifiers investigates various architectures and concepts for the design and control of radio-frequency (RF) power amplifiers. This book covers merits and challenges of integrating RF power amplifiers in various technologies, and introduces a number of RF power amplifier performance metrics. It provides a thorough review of various power amplifier topologies, followed by a description of approaches and architectures for the control and linearization of these amplifiers. A novel parallel amplifier architecture introduced in this book offers a breakthrough solution to enhancing efficiency in systems using power control. Design and Control of RF Power Amplifiers is a valuable resource for designers, researchers and students in the field of RF integrated circuit design. Detailed and thorough coverage of various concepts in RF power amplifier design makes this book an invaluable guide for both beginners and professionals.




Envelope Tracking Power Amplifiers for Wireless Communications


Book Description

Envelope tracking technology is seen as the most promising efficiency enhancement technology for RF power amplifiers for 4G and beyond wireless communications. More and more organizations are investing and researching on this topic with huge potential in academic and commercial areas. This is the first book on the market to offer complete introduction, theory, and design considerations on envelope tracking for wireless communications. This resource presents you with a full introduction to the subject and covers underlying theory and practical design considerations.




High Efficiency Wideband Envelope Tracking Power Amplifier for Next-generation Wireless Communications


Book Description

The latest generation of smart devices deployed in cellular networks has created explosive growth in network data traffic, and the increasing demand for broadband services with higher data rates, require higher peak to average power ratio (PAPR) with wider bandwidth. One of the challenges in the conventional power amplifiers (PAs) with fixed supply voltage, is the degraded efficiency and generated heats at a large back-off to meet tight linearity requirements. This dissertation presents high efficiency wideband envelope tracking power amplifiers for 2.1 GHz micro base-stations and 2.5 GHz wireless mobile applications. By superimposing the envelope signal at the drain such that the RF amplifier operates consistently closer to saturation, the overall efficiency is improved and the generated heat is reduced dramatically. In the first part of the dissertation, a high performance BiCMOS DMOS monolithic envelope amplifier for micro-base station power amplifiers is presented. Due to the low breakdown voltage of the CMOS transistors, the high voltage envelope amplifier has been implemented with discrete components with high voltage process. Compared to these discrete solutions, an integrated circuits implementation for the envelope amplifier brings many benefits. The design of monolithic envelope amplifiers for high voltage (VDD = 15 V) envelope tracking applications, and the design techniques to solve the reliability issues with thin gate oxide is described. The overall envelope tracking system employing a GaN-HEMT RF transistor, and fully integrated high voltage envelope amplifier with a 0.35[mu]m BiCMOS DMOS process, is demonstrated. In the second part, a high-efficiency wideband envelope tracking power amplifier for mobile LTE applications will be presented. The CMOS envelope amplifier with hybrid linear and switcher is designed in a 150 nm CMOS process. The envelope amplifier employs direct sensing of the linear stage current to reduce the propagation delay in the switcher. The strategy is demonstrated to improve the efficiency of the complete envelope tracking power amplifier system. The resulting performance of envelope tracking system employing a GaAs HBT-based RF PA with a 5 MHz LTE signal input demonstrated state-of-the-art efficiency while meet the linearity requirement.




Design of Linear RF Outphasing Power Amplifiers


Book Description

This is the first book devoted exclusively to the outphasing power amplifier, covering the most recent research results on important aspects in practical design and applications. A compilation of all the proposed outphasing approaches, this is an important resource for engineers designing base station and mobile handset amplifiers, engineering managers and program managers supervising power amplifier designs, and R&D personnel in industry. The work enables you to: design microwave power amplifiers with higher efficiency and improved linearity at a lower cost; understand linearity and performance tradeoffs in microwave power amplifiers; and understand the effect of new modulation techniques on microwave power amplifiers.




Concurrent Multi-band Envelope Tracking Power Amplifiers for Emerging Wireless Communications


Book Description

Emerging wireless communication is shifting toward data-centric broadband services, resulting in employment of sophisticated and spectrum efficient modulation and access techniques. This yields communication signals with large peak-to-average power ratios (PAPR) and stringent linearity requirements. For example, future wireless communication standard, such as long term evolution advanced (LTE-A) require adoption of carrier aggregation techniques to improve their effective modulation bandwidth. The carrier aggregation technique for LTE-A incorporates multiple carriers over a wide frequency range to create a wider bandwidth of up to 100MHz. This will require future power amplifiers (PAs) and transmitters to efficiently amplify concurrent multi-band signals with large PAPR, while maintaining good linearity. Different back-off efficiency enhancement techniques are available, such as envelope tracking (ET) and Doherty. ET has gained a lot of attention recently as it can be applied to both base station and mobile transmitters. Unfortunately, few publications have investigated concurrent multi-band amplification using ET PAs, mainly due to the limited bandwidth of the envelope amplifier. In this thesis, a novel approach to enable concurrent amplification of multi-band signals using a single ET PA will be presented. This thesis begins by studying the sources of nonlinearities in single-band and dual-band PAs. Based on the analysis, a design methodology is proposed to reduce the sources of memory effects in single-band and dual-band PAs from the circuit design stage and improve their linearizability. Using the proposed design methodology, a 45W GaN PA was designed. The PA was linearized using easy to implement, memoryless digital pre-distortion (DPD) with 8 and 28 coefficients when driven with single-band and dual-band signals, respectively. This analysis and design methodology will enable the design of PAs with reduced memory effects, which can be linearized using simple, power efficient linearization techniques, such as lookup table or memoryless polynomial DPD. Note that the power dissipation of the linearization engine becomes crucial as we move toward smaller base station cells, such as femto- and pico-cells, where complicated DPD models cannot be implemented due to their significant power overhead. This analysis is also very important when implementing a multi-band ET PA system, where the sources of memory effects in the PA itself are minimized through the proposed design methodology. Next, the principle of concurrent dual-band ET operation using the low frequency component (LFC) of the envelope of the dual-band signal is presented. The proposed dual-band ET PA modulates the drain voltage of the PA using the LFC of the envelope of the dual-band signal. This will enable concurrent dual-band operation of the ET PA without posing extra bandwidth requirements on the envelope amplifier. A detailed efficiency and linearity analysis of the dual-band ET PA is also presented. Furthermore, a new dual-band DPD model with supply dependency is proposed in this thesis, capable of capturing and compensating for the sources of distortion in the dual-band ET PA. To the best of our knowledge, concurrent dual-band operation of ET PAs using the LFC of the envelope of the dual-band signal is presented for the first time in the literature. The proposed dual-band ET operation is validated using the measurement results of two GaN ET PA prototypes. Lastly, the principle of concurrent dual-band ET operation is extended to multi-band signals using the LFC of the envelope of the multi-band signal. The proposed multi-band ET operation is validated using the measurement results of a tri-band ET PA. To the best of our knowledge, this is the first reported tri-band ET PA in literature. The tri-band ET PA is linearized using a new tri-band DPD model with supply dependency.




Power Amplifier Design


Book Description

Annotation This design guide collects 21 articles published in between 1989 and 2001, enabling readers to review classic theory as well as stay abreast of new technology. Coverage includes the specification, analysis, and measurement of distortion from various perspectives; predistortion techniques; and practical designs, including the magnetron, biasing LDMOS FETs for linear operation, the RF power transistor, and a push-pull 300-watt amplifier for 81.36 MHZ. Each article includes references. There is no index. Annotation c. Book News, Inc., Portland, OR (booknews.com).




High-Efficiency Load Modulation Power Amplifiers for Wireless Communications


Book Description

This cutting-edge resource presents a complete and systematic overview of the practical design considerations of radio frequency (RF) high efficiency load modulation power amplifiers (PA) for modern wireless communications for 4G and beyond. It provides comprehensive insight into all aspects of load modulation PA design and optimization not only covering design approaches specifically for passive and active load modulation operation but also hybrid with dynamic supply modulation and digital signal processing algorithms required for performance enhancement. Passive load impedance tuner design, dynamic load modulation PA, active load modulation PA and Doherty PA design for efficiently enhancement are explained. Readers find practical guidance into load modulation PA design for bandwidth extension, including video bandwidth enhancement techniques, broadband dynamic load amplifiers, topology selection, design procedures, and network output. This book presents the evolution and integration of classical load modulation PA topologies in order to meet new challenges in the field.




Bandwidth and Efficiency Enhancement in Radio Frequency Power Amplifiers for Wireless Transmitters


Book Description

This book focuses on broadband power amplifier design for wireless communication. Nonlinear model embedding is described as a powerful tool for designing broadband continuous Class-J and continuous class F power amplifiers. The authors also discuss various techniques for extending bandwidth of load modulation based power amplifiers, such as Doherty power amplifier and Chireix outphasing amplifiers. The book also covers recent trends on digital as well as analog techniques to enhance bandwidth and linearity in wireless transmitters. Presents latest trends in designing broadband power amplifiers; Covers latest techniques for using nonlinear model embedding in designing power amplifiers based on waveform engineering; Describes the latest techniques for extending bandwidth of load modulation based power amplifiers such as Doherty power amplifier and Chireix outphasing amplifiers; Includes coverage of hybrid analog/digital predistortion as wideband solution for wireless transmitters; Discusses recent trends on on-chip power amplifier design with GaN /GaAs MMICs for high frequency applications.