Environmental Applications of Geochemical Modeling


Book Description

An application of geochemical modeling to environmental problems, illustrated with case studies of real-world environmental investigations.




Environmental Geochemistry


Book Description

Environmental Geochemistry: Site Characterization, Data Analysis and Case Histories, Second Edition, reviews the role of geochemistry in the environment and details state-of-the-art applications of these principles in the field, specifically in pollution and remediation situations. Chapters cover both philosophy and procedures, as well as applications, in an array of issues in environmental geochemistry including health problems related to environment pollution, waste disposal and data base management. This updated edition also includes illustrations of specific case histories of site characterization and remediation of brownfield sites. - Covers numerous global case studies allowing readers to see principles in action - Explores the environmental impacts on soils, water and air in terms of both inorganic and organic geochemistry - Written by a well-respected author team, with over 100 years of experience combined - Includes updated content on: urban geochemical mapping, chemical speciation, characterizing a brownsfield site and the relationship between heavy metal distributions and cancer mortality




Geochemical and Biogeochemical Reaction Modeling


Book Description

This book provides a comprehensive overview of reaction processes in the Earth's crust and on its surface, both in the laboratory and in the field. A clear exposition of the underlying equations and calculation techniques is balanced by a large number of fully worked examples. The book uses The Geochemist's Workbench® modeling software, developed by the author and already installed at over 1000 universities and research facilities worldwide. Since publication of the first edition, the field of reaction modeling has continued to grow and find increasingly broad application. In particular, the description of microbial activity, surface chemistry, and redox chemistry within reaction models has become broader and more rigorous. These areas are covered in detail in this new edition, which was originally published in 2007. This text is written for graduate students and academic researchers in the fields of geochemistry, environmental engineering, contaminant hydrology, geomicrobiology, and numerical modeling.




Geochemical Reaction Modeling


Book Description

An overview of the use of numerical methods to model reaction processes in the Earth's crust and on its surface. The theoretical foundations of the field are discussed, together with examples and case studies demonstrating the techniques that can be applied to scientific and practical problems.




Geochemical Rate Models


Book Description

This well-organised, comprehensive reference and textbook describes rate models developed from fundamental kinetic theory and presents models using consistent terminology and notation. Major topics include rate equations, reactor theory, transition state theory, surface reactivity, advective and diffusive transport, aggregation kinetics, nucleation kinetics and solid-solid transformation rates. The theoretical basis and mathematical derivation of each model is presented in detail and illustrated with worked examples from real-world applications to geochemical problems. The book is also supported by online resources: self-study problems put students' new learning into practice, and spreadsheets provide the full data used in figures and examples, enabling students to manipulate the data for themselves. This is an ideal overview for graduate students, providing a solid understanding of geochemical kinetics. It will also provide researchers and professional geochemists with a valuable reference for solving scientific and engineering problems.




Reactive Transport Modeling


Book Description

Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.




Groundwater Geochemistry


Book Description

Groundwater Geochemistry: Fundamentals and Applications to Contamination examines the integral role geochemistry play s in groundwater monitoring and remediation programs, and presents it at a level understandable to a wide audience. Readers of all backgrounds can gain a better understanding of geochemical processes and how they apply to groundwater systems. The text begins with an explanation of fundamental geochemical processes, followed by a description of the methods and tools used to understand and simulate them. The book then explains how geochemistry applies to contaminant mobility, discusses remediation system design, sampling program development, and the modeling of geochemical interactions. This clearly written guide concludes with specific applications of geochemistry to contaminated sites. This is an ideal choice for readers who do not have an extensive technical background in aqueous chemistry, geochemistry, or geochemical modeling. The only prerequisite is a desire to better understand natural processes through groundwater geochemistry.




Quantitative Geochemistry


Book Description

"This book presents quantitative treatments of a wide range of fundamental problems related to geochemistry and geology. It shows that trace elements, isotopes, and equations are integrative tools in modern geochemistry for studying various Earth processes." -- Back cover.




Environmental and Low Temperature Geochemistry


Book Description

Environmental and Low-Temperature Geochemistry presents conceptual and quantitative principles of geochemistry in order to foster understanding of natural processes at and near the earth’s surface, as well as anthropogenic impacts on the natural environment. It provides the reader with the essentials of concentration, speciation and reactivity of elements in soils, waters, sediments and air, drawing attention to both thermodynamic and kinetic controls. Specific features include: • An introductory chapter that reviews basic chemical principles applied to environmental and low-temperature geochemistry • Explanation and analysis of the importance of minerals in the environment • Principles of aqueous geochemistry • Organic compounds in the environment • The role of microbes in processes such as biomineralization, elemental speciation and reduction-oxidation reactions • Thorough coverage of the fundamentals of important geochemical cycles (C, N, P, S) • Atmospheric chemistry • Soil geochemistry • The roles of stable isotopes in environmental analysis • Radioactive and radiogenic isotopes as environmental tracers and environmental contaminants • Principles and examples of instrumental analysis in environmental geochemistry The text concludes with a case study of surface water and groundwater contamination that includes interactions and reactions of naturally-derived inorganic substances and introduced organic compounds (fuels and solvents), and illustrates the importance of interdisciplinary analysis in environmental geochemistry. Readership: Advanced undergraduate and graduate students studying environmental/low T geochemistry as part of an earth science, environmental science or related program. Additional resources for this book can be found at: www.wiley.com/go/ryan/geochemistry.




Using Geochemical Data


Book Description

This textbook is a complete rewrite, and expansion of Hugh Rollinson's highly successful 1993 book Using Geochemical Data: Evaluation, Presentation, Interpretation. Rollinson and Pease's new book covers the explosion in geochemical thinking over the past three decades, as new instruments and techniques have come online. It provides a comprehensive overview of how modern geochemical data are used in the understanding of geological and petrological processes. It covers major element, trace element, and radiogenic and stable isotope geochemistry. It explains the potential of many geochemical techniques, provides examples of their application, and emphasizes how to interpret the resulting data. Additional topics covered include the critical statistical analysis of geochemical data, current geochemical techniques, effective display of geochemical data, and the application of data in problem solving and identifying petrogenetic processes within a geological context. It will be invaluable for all graduate students, researchers, and professionals using geochemical techniques.