Environmental Assessment of Waste-to-energy Processes
Author : K. P. Ananth
Publisher :
Page : 84 pages
File Size : 43,68 MB
Release : 1977
Category : Refuse as fuel
ISBN :
Author : K. P. Ananth
Publisher :
Page : 84 pages
File Size : 43,68 MB
Release : 1977
Category : Refuse as fuel
ISBN :
Author : Thomas Trabold
Publisher : Academic Press
Page : 294 pages
File Size : 13,72 MB
Release : 2018-09-05
Category : Technology & Engineering
ISBN : 0128111585
Sustainable Food Waste-to-Energy Systems assesses the utilization of food waste in sustainable energy conversion systems. It explores all sources of waste generated in the food supply chain (downstream from agriculture), with coverage of industrial, commercial, institutional and residential sources. It provides a detailed analysis of the conventional pathways for food waste disposal and utilization, including composting, incineration, landfilling and wastewater treatment. Next, users will find valuable sections on the chemical, biochemical and thermochemical waste-to-energy conversion processes applicable for food waste and an assessment of commercially available sustainable food waste-to-energy conversion technologies. Sustainability aspects, including consideration of environmental, economic and social impacts are also explored. The book concludes with an analysis of how deploying waste-to-energy systems is dependent on cross-cutting research methods, including geographical information systems and big data. It is a useful resource for professionals working in waste-to-energy technologies, as well as those in the food industry and food waste management sector planning and implementing these systems, but is also ideal for researchers, graduate students, energy policymakers and energy analysts interested in the most recent advances in the field. - Provides guidance on how specific food waste characteristics drive possible waste-to-energy conversion processes - Presents methodologies for selecting among different waste-to-energy options, based on waste volumes, distribution and properties, local energy demand (electrical/thermal/steam), opportunities for industrial symbiosis, regulations and incentives and social acceptance, etc. - Contains tools to assess potential environmental and economic performance of deployed systems - Links to publicly available resources on food waste data for energy conversion
Author : Michael Z. Hauschild
Publisher : Springer
Page : 1215 pages
File Size : 29,40 MB
Release : 2017-09-01
Category : Technology & Engineering
ISBN : 3319564757
This book is a uniquely pedagogical while still comprehensive state-of-the-art description of LCA-methodology and its broad range of applications. The five parts of the book conveniently provide: I) the history and context of Life Cycle Assessment (LCA) with its central role as quantitative and scientifically-based tool supporting society’s transitioning towards a sustainable economy; II) all there is to know about LCA methodology illustrated by a red-thread example which evolves as the reader advances; III) a wealth of information on a broad range of LCA applications with dedicated chapters on policy development, prospective LCA, life cycle management, waste, energy, construction and building, nanotechnology, agrifood, transport, and LCA-related concepts such as footprinting, ecolabelling,design for environment, and cradle to cradle. IV) A cookbook giving the reader recipes for all the concrete actions needed to perform an LCA. V) An appendix with an LCA report template, a full example LCA report serving as inspiration for students who write their first LCA report, and a more detailed overview of existing LCIA methods and their similarities and differences.
Author : National Research Council
Publisher : National Academies Press
Page : 336 pages
File Size : 25,65 MB
Release : 2000-10-21
Category : Science
ISBN : 030906371X
Incineration has been used widely for waste disposal, including household, hazardous, and medical wasteâ€"but there is increasing public concern over the benefits of combusting the waste versus the health risk from pollutants emitted during combustion. Waste Incineration and Public Health informs the emerging debate with the most up-to-date information available on incineration, pollution, and human healthâ€"along with expert conclusions and recommendations for further research and improvement of such areas as risk communication. The committee provides details on: Processes involved in incineration and how contaminants are released. Environmental dynamics of contaminants and routes of human exposure. Tools and approaches for assessing possible human health effects. Scientific concerns pertinent to future regulatory actions. The book also examines some of the social, psychological, and economic factors that affect the communities where incineration takes place and addresses the problem of uncertainty and variation in predicting the health effects of incineration processes.
Author : Gary C. Young
Publisher : John Wiley & Sons
Page : 402 pages
File Size : 37,80 MB
Release : 2010-11-29
Category : Science
ISBN : 1118029275
MUNICIPAL SOLID WASTE TO ENERGY CONVERSION PROCESSES A TECHNICAL AND ECONOMIC REVIEW OF EMERGING WASTE DISPOSAL TECHNOLOGIES Intended for a wide audience ranging from engineers and academics to decision-makers in both the public and private sectors, Municipal Solid Waste to Energy Conversion Processes: Economic, Technical, and Renewable Comparisons reviews the current state of the solid waste disposal industry. It details how the proven plasma gasification technology can be used to manage Municipal Solid Waste (MSW) and to generate energy and revenues for local communities in an environmentally safe manner with essentially no wastes. Beginning with an introduction to pyrolysis/gasification and combustion technologies, the book provides many case studies on various waste-to-energy (WTE) technologies and creates an economic and technical baseline from which all current and emerging WTE technologies could be compared and evaluated. Topics include: Pyrolysis/gasification technology, the most suitable and economically viable approach for the management of wastes Combustion technology Other renewable energy resources including wind and hydroelectric energy Plasma economics Cash flows as a revenue source for waste solids-to-energy management Plant operations, with an independent case study of Eco-Valley plant in Utashinai, Japan Extensive case studies of garbage to liquid fuels, wastes to electricity, and wastes to power ethanol plants illustrate how currently generated MSW and past wastes in landfills can be processed with proven plasma gasification technology to eliminate air and water pollution from landfills.
Author : Adisa Azapagic
Publisher : John Wiley & Sons
Page : 468 pages
File Size : 19,46 MB
Release : 2004-07-23
Category : Business & Economics
ISBN : 9780470856093
This groundbreaking text provides background theory on the concept of sustainable development (environmental, social and economic aspects) and presents a series of practical case studies on such topics as waste water management, air quality, solid waste management and renewable energy.
Author : Eduardo Jacob-Lopes
Publisher :
Page : 364 pages
File Size : 13,12 MB
Release : 2018-12-13
Category :
ISBN : 9781536144314
Shale gas is natural gas that is tightly locked within low permeability sedimentary rock. Recent technological advances are making shale gas reserves increasingly accessible and their recovery more economically feasible. This resource is already being exploited in South Africa, China, the United States and Canada. Shale gas is being produced in large volumes, and will likely be developed in coming years on every continent except Antarctica. Depending on factors such as future natural gas prices and government regulations, further development of shale gas resources could potentially span many decades and involve the drilling of tens of thousands of hydraulically fractured horizontal wells. This development is changing long-held expectations about oil and gas resource availability; several observers have characterized it as a game changer. Abundant, close to major markets, and relatively inexpensive to produce, shale gas represents a major new source of fossil energy. However, the rapid expansion of shale gas development over the past decade has occurred without a corresponding investment in monitoring and research addressing the impacts on the environment, public health, and communities. The primary concerns are the degradation of the quality of groundwater and surface water (including the safe disposal of large volumes of wastewater); the risk of increased greenhouse gas (GHG) emissions (including fugitive methane emissions during and after production), thus exacerbating anthropogenic climate change; disruptive effects on communities and land; and adverse effects on to human health. Other concerns include the local release of air contaminants and the potential for triggering small- to moderate-sized earthquakes in seismically active areas. These concerns will vary by region. The shale gas regions can be found near urban areas, presenting a large diversity in their geology, hydrology, land uses, and population density. The phrase environmental impacts from shale gas development masks many regional differences that are essential to understanding these impacts.
Author : Naomi B Klinghoffer
Publisher : Elsevier
Page : 257 pages
File Size : 49,98 MB
Release : 2013-05-15
Category : Technology & Engineering
ISBN : 0857096362
Increasing global consumerism and population has led to an increase in the levels of waste produced. Waste to energy (WTE) conversion technologies can be employed to convert residual wastes into clean energy, rather than sending these wastes directly to landfill. Waste to energy conversion technology explores the systems, technology and impacts of waste to energy conversion.Part one provides an introduction to WTE conversion and reviews the waste hierarchy and WTE systems options along with the corresponding environmental, regulatory and techno-economic issues facing this technology. Part two goes on to explore further specific aspects of WTE systems, engineering and technology and includes chapters on municipal solid waste (MSW) combustion plants and WTE systems for district heating. Finally, part three highlights pollution control systems for waste to energy technologies.Waste to energy conversion technology is a standard reference book for plant managers, building engineers and consultants requiring an understanding of WTE technologies, and researchers, scientists and academics interested in the field. - Reviews the waste hierarchy and waste to energy systems options along with the environmental and social impact of WTE conversion plants - Explores the engineering and technology behind WTE systems including considerations of municipal solid waste (MSW) its treatment, combustion and gasification - Considers pollution control systems for WTE technologies including the transformation of wast combustion facilities from major polluters to pollution sinks
Author : Ashok Pandey
Publisher : Elsevier
Page : 731 pages
File Size : 39,59 MB
Release : 2015-05-08
Category : Science
ISBN : 0444634649
Industrial Biorefineries and White Biotechnology provides a comprehensive look at the increasing focus on developing the processes and technologies needed for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular, the development of low-cost technologies. During the last 3-4 years, there have been scientific and technological developments in the area; this book represents the most updated information and technological perspective on the topic. - Provides information on the most advanced and innovative pretreatment processes and technologies for biomass - Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery - Provides information on integration of processes for the pretreatment of biomass - Designed as a textbook for both graduate students and researchers
Author : Petr Stehlik
Publisher : Springer
Page : 110 pages
File Size : 35,62 MB
Release : 2016-02-05
Category : Technology & Engineering
ISBN : 3319154672
Putting forward an up-to-date waste-to-energy approach that combines experience, sophisticated modeling and technical-economic analysis, this book examines the current need for the maximum utilization of energy from waste and the associated environmental impacts. It outlines step-by-step procedures for a complex and original waste-to-energy approach from the idea to its industrial application. With waste incinerators and industrial plants producing large amounts of pollutants, municipalities as well as smaller decentralized operations are beginning to focus on waste research. The principal advantage of utilizing research findings is the ability to apply a complex approach “from idea to industrial implementation” with respect to the needs of the market established by thorough market analysis. This book builds on this concept with an original approach that takes into consideration geographical aspects, the specifics of regions/micro-regions and technological units and/or equipment. Key areas discussed and analyzed in the text include: strategic planning of energy-source locations according to the nature of the respective region or microregion; types and amounts of wastes; logistics etc. using original mathematical models; consideration of on-site processing of various types of waste, taking into account the character of the region (agricultural, industrial etc.); tailor-made technologies for energy recovery from various types of wastes; implementation of individual technologies with original elements; and support for environmental protection based on advanced flue gas (i.e. off-gas in the case of incineration) cleaning methods.