Environmental Impact Statement for the Cassini Mission. Supplement 1


Book Description

This Final Supplemental Environmental Impact Statement (FSEIS) to the 1995 Cassini mission Environmental Impact Statement (EIS) focuses on information recently made available from updated mission safety analyses. This information is pertinent to the consequence and risk analyses of potential accidents during the launch and cruise phases of the mission that were addressed in the EIS. The type of accidents evaluated are those which could potentially result in a release of plutonium dioxide from the three Radioisotope Thermoelectric Generators (RTGS) and the up to 129 Radioisotope Heater Units (RHUS) onboard the Cassini spacecraft. The RTGs use the heat of decay of plutonium dioxide to generate electric power for the spacecraft and instruments. The RHUs, each of which contains a small amount of plutonium dioxide, provide heat for controlling the thermal environment of the spacecraft and several of its instruments. The planned Cassini mission is an international cooperative effort of the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI) to conduct a 4-year scientific exploration of the planet Saturn, its atmosphere, moons, rings, and magnetosphere. Unspecified Center NASA/TM-1997-111474/SUPPL1, NAS 1.15:111474/SUPPL1 ...




























The Cassini-Huygens Visit to Saturn


Book Description

Cassini-Huygens was the most ambitious and successful space journey ever launched to the outer Solar System. This book examines all aspects of the journey: its conception and planning; the lengthy political processes needed to make it a reality; the engineering and development required to build the spacecraft; its 2.2-billion mile journey from Earth to the Ringed Planet and the amazing discoveries from the mission. The author traces how the visions of a few brilliant scientists matured, gained popularity and eventually became a reality. Innovative technical leaps were necessary to assemble such a multifaceted spacecraft and reliably operate it while it orbited a planet so far from our own. The Cassini-Huygens spacecraft design evolved from other deep space efforts, most notably the Galileo mission to Jupiter, enabling the voluminous, paradigm-shifting scientific data collected by the spacecraft. Some of these discoveries are absolute gems. A small satellite that scientists once thought of as a dead piece of rock turned out to contain a warm underground sea that could conceivably harbor life. And we now know that hiding under the mist of Saturn’s largest moon, Titan, is a world with lakes, fluvial channels, and dunes hauntingly reminiscent of those on our own planet, except that on Titan, it’s not water that fills those lakes but hydrocarbons. These and other breakthroughs illustrate why the Cassini-Huygens mission will be remembered as one of greatest voyages of discovery ever made.