Virginia State Documents


Book Description




Corrosion Engineering and Cathodic Protection Handbook


Book Description

The Corrosion Engineering and Cathodic Protection Handbook combines the author's previous three works, Corrosion Chemistry, Cathodic Protection, and Corrosion Engineering to offer, in one place, the most comprehensive and thorough work available to the engineer or student. The author has also added a tremendous and exhaustive list of questions and answers based on the text, which can be used in university courses or industry courses, something that has never been offered before in this format. The Corrosion Engineering and Cathodic Protection Handbook is a must-have reference book for the engineer in the field, covering the process of corrosion from a scientific and engineering aspect, along with the prevention of corrosion in industrial applications. It is also a valuable textbook, with the addition of the questions and answers section creating a unique book that is nothing short of groundbreaking. Useful in solving day-to-day problems for the engineer, and serving as a valuable learning tool for the student, this is sure to be an instant contemporary classic and belongs in any engineer's library.




Metals Abstracts


Book Description













Self-Healing Polymers


Book Description

Self-healing is a well-known phenomenon in nature: a broken bone merges after some time and if skin is damaged, the wound will stop bleeding and heals again. This concept can be mimicked in order to create polymeric materials with the ability to regenerate after they have suffered degradation or wear. Already realized applications are used in aerospace engineering, and current research in this fascinating field shows how different self-healing mechanisms proven successful by nature can be adapted to produce even more versatile materials. The book combines the knowledge of an international panel of experts in the field and provides the reader with chemical and physical concepts for self-healing polymers, including aspects of biomimetic processes of healing in nature. It shows how to design self-healing polymers and explains the dynamics in these systems. Different self-healing concepts such as encapsulated systems and supramolecular systems are detailed. Chapters on analysis and friction detection in self-healing polymers and on applications round off the book.




An Evaluation of Equipment and Procedures for Tensile Bond Testing of Concrete Repairs


Book Description

If the durability of repaired concrete structures is a primary objective of any repair project, then every effort should be made to ensure adequate bonding between the repair and the existing concrete substrate. A total of 257 partial-depth cores in 77 experimental repairs were tested in Florida, Illinois, and Arizona in order to evaluate the effect of material properties and environmental conditions on the bond between repair and concrete substrate. Three pull-off testing devices were used to determine the bond strengths for each of the experimental repairs. In addition, the testing devices themselves were evaluated by analyzing the magnitude and relative precision of the pull-off strengths, modes of failure, and ease of use in an effort to identify a reliable and practical device for determining in situ tensile bond. The optimum depth of core drilling into the existing substrate was determined by comparing theoretical finite element analysis of failure zone stress distribution with measured test results.







Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE)


Book Description

This volume highlights the latest advances, innovations, and applications in the field of asphalt pavement technology, as presented by leading international researchers and engineers at the 5th International Symposium on Asphalt Pavements & Environment (ISAP 2019 APE Symposium), held in Padua, Italy on September 11-13, 2019. It covers a diverse range of topics concerning materials and technologies for asphalt pavements, designed for sustainability and environmental compatibility: sustainable pavement materials, marginal materials for asphalt pavements, pavement structures, testing methods and performance, maintenance and management methods, urban heat island mitigation, energy harvesting, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.