Environmental Standards for Electro-Optical Systems


Book Description

The Harry Diamond Laboratories of the U.S. Army electronics Research and Development Command was tasked to help develop standard environmental conditions pertaining to limited visibility operations, for training, research, development, and analysis. This task was part of an effort to ensure use of realistic battlefield environmental conditions throughout the Army. To support this effort, this report provides background information, definitions, criteria for setting standards, and data for selected environmental conditions. The definitions of standards are based on an extension to system operability of the definitions given for physical survivability in Army Regulation AR 70-38, Research, Development, Test, and Evaluation of Materiel for Extreme Climatic Conditions. The objective is to have a procedure for determining the probability of successful performance of signal links of weapon systems that can be affected by environment. Data presented here include those environmental parameters that affect the performance of electro-optical links of military systems. These parameters include transmission and reflectance data. Transmission data are provided for visibility, ceiling, rain and snow rates, and humidity. These data are provided in terms of risk that a given level will be exceeded, based on the definitions of AR 70-38.




Environmental Support for Electro Optics Systems


Book Description

Environmental effects on Electro-Optical systems are described, and the impact of these effects are crudely assessed. From this discussion, environmental support requirements are developed. The state of the science in responding to requirement is reviewed, and recommendations are made for a Navy research and environmental support program. (Author).




Electro-optical System Analysis and Design


Book Description

The field of radiometry can be dangerous territory to the uninitiated, faced with the risk of errors and pitfalls. The concepts and tools explored in this book empower readers to comprehensively analyse, design, and optimise real-world systems. This book builds on the foundation of solid theoretical understanding, and strives to provide insight into hidden subtleties in radiometric analysis. Atmospheric effects provide opportunity for a particularly rich set of intriguing observations. The term 'radiometry' is used in its wider context to specifically cover the calculation of flux. This wider definition is commonly used by practitioners in the field to cover all forms of manipulation, including creation, measurement, calculation, modeling, and simulation of optical flux. Two concurrent themes frame the discussion: fragmenting a complex problem into simple building blocks and then designing complex systems from smaller elements. Analysis and design, as a creative synthesis of something new, cannot be easily taught other than by example; for this purpose, several case studies are presented.This book also provides a number of problems, some with solutions demonstrated in Matlab(R) and the Python' pyradi toolkit.







Laser Radar


Book Description

In today's world, the range of technologies with the potential to threaten the security of U.S. military forces is extremely broad. These include developments in explosive materials, sensors, control systems, robotics, satellite systems, and computing power, to name just a few. Such technologies have not only enhanced the capabilities of U.S. military forces, but also offer enhanced offensive capabilities to potential adversaries - either directly through the development of more sophisticated weapons, or more indirectly through opportunities for interrupting the function of defensive U.S. military systems. Passive and active electro-optical (EO) sensing technologies are prime examples. Laser Radar considers the potential of active EO technologies to create surprise; i.e., systems that use a source of visible or infrared light to interrogate a target in combination with sensitive detectors and processors to analyze the returned light. The addition of an interrogating light source to the system adds rich new phenomenologies that enable new capabilities to be explored. This report evaluates the fundamental, physical limits to active EO sensor technologies with potential military utility; identifies key technologies that may help overcome the impediments within a 5-10 year timeframe; considers the pros and cons of implementing each existing or emerging technology; and evaluates the potential uses of active EO sensing technologies, including 3D mapping and multi-discriminate laser radar technologies.




Systems Engineering and Analysis of Electro-Optical and Infrared Systems


Book Description

Electro-optical and infrared systems are fundamental in the military, medical, commercial, industrial, and private sectors. Systems Engineering and Analysis of Electro-Optical and Infrared Systems integrates solid fundamental systems engineering principles, methods, and techniques with the technical focus of contemporary electro-optical and infrared optics, imaging, and detection methodologies and systems. The book provides a running case study throughout that illustrates concepts and applies topics learned. It explores the benefits of a solid systems engineering-oriented approach focused on electro-optical and infrared systems. This book covers fundamental systems engineering principles as applied to optical systems, demonstrating how modern-day systems engineering methods, tools, and techniques can help you to optimally develop, support, and dispose of complex, optical systems. It introduces contemporary systems development paradigms such as model-based systems engineering, agile development, enterprise architecture methods, systems of systems, family of systems, rapid prototyping, and more. It focuses on the connection between the high-level systems engineering methodologies and detailed optical analytical methods to analyze, and understand optical systems performance capabilities. Organized into three distinct sections, the book covers modern, fundamental, and general systems engineering principles, methods, and techniques needed throughout an optical system’s development lifecycle (SDLC); optical systems building blocks that provide necessary optical systems analysis methods, techniques, and technical fundamentals; and an integrated case study that unites these two areas. It provides enough theory, analytical content, and technical depth that you will be able to analyze optical systems from both a systems and technical perspective.




Electro-Optical Systems. Cavity Ring-down Technique for High-reflectance Measurement


Book Description

Electrical components, Electrical equipment, Electronic equipment and components, Liquid crystal devices, Optoelectronic devices, Display devices, Semiconductor devices, Assessed quality, Quality assurance systems, Qualification approval, Approval testing, Inspection, Specification (approval), Marking, Grades (quality), Sampling methods, Testing conditions, Statistical quality control, Optical properties of materials, Optical measurement, Environmental testing, Mechanical testing, Endurance testing, Test specimens







Harnessing Light


Book Description

Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.




Optical Communications Rules of Thumb


Book Description

This engineering tool provides over 200 time and cost saving rules of thumb--short cuts, tricks, and methods that optical communications veterans have developed through long years of trial and error. * DWDM (Dense Wavelength Division Multiplexing) and SONET (Synchronous Optical NETwork) rules * Information Transmission, fiber optics, and systems rules