Enzymatic Conversion of Biomass for Fuels Production


Book Description

Discusses the use of enzymatic and microbial biocatalysis for transformation of biomass to liquid or gaseous fuels. Explores metabolic pathway engineering. Discusses characterization of new hydrolytic enzymes. Presents new microorganisms and fermentation techniques. Focuses on lignocellulosic biomass conversion technology.







Advancements in Catalytic Conversion of Biomass into Biofuels and Chemicals


Book Description

Numerous efforts have been devoted to using biomass as a feedstock for the production of bio-based materials, biochemicals, and biofuels that reduce greenhouse gas emissions and dependence on conventional fossil resources. Conversion strategies for the production of platform chemicals, building blocks, fine chemicals, and biofuels include a wide range of processes such as chemical and mechanical pretreatment for improved carbohydrate production, fractionation of biomass into carbohydrates and lignin and their further conversions, microbial and enzymatic conversion of biomass into valuable products, and direct catalytic conversion of biomass or its components into chemicals and fuels. This Special Issue introduces recent innovative research results in the area of bioenergy and value-added chemicals from various feedstocks through chemical and biological catalytic processes.




Lignocellulose Conversion


Book Description

Bioethanol has been recognized as a potential alternative to petroleum-derived transportation fuels. Even if cellulosic biomass is less expensive than corn and sugarcane, the higher costs for its conversion make the near-term price of cellulosic ethanol higher than that of corn ethanol and even more than that of sugarcane ethanol. Conventional process for bioethanol production from lignocellulose includes a chemical/physical pre-treatment of lignocellulose for lignin removal, mostly based on auto hydrolysis and acid hydrolysis, followed by saccharification of the free accessible cellulose portions of the biomass. The highest yields of fermentable sugars from cellulose portion are achieved by means of enzymatic hydrolysis, currently carried out using a mix of cellulases from the fungus Trichoderma reesei. Reduction of (hemi)cellulases production costs is strongly required to increase competitiveness of second generation bioethanol production. The final step is the fermentation of sugars obtained from saccharification, typically performed by the yeast Saccharomyces cerevisiae. The current process is optimized for 6-carbon sugars fermentation, since most of yeasts cannot ferment 5-carbon sugars. Thus, research is aimed at exploring new engineered yeasts abilities to co-ferment 5- and 6-carbon sugars. Among the main routes to advance cellulosic ethanol, consolidate bio-processing, namely direct conversion of biomass into ethanol by a genetically modified microbes, holds tremendous potential to reduce ethanol production costs. Finally, the use of all the components of lignocellulose to produce a large spectra of biobased products is another challenge for further improving competitiveness of second generation bioethanol production, developing a biorefinery.




Lignocellulosic Biomass to Liquid Biofuels


Book Description

Lignocellulosic Biomass to Liquid Biofuels explores the existing technologies and most recent developments for the production of second generation liquid biofuels, providing an introduction to lignocellulosic biomass and the processes for its conversion into biofuels. The book demonstrates biorefinery concepts compared with petro refinery, as well as the challenges of second generation biofuels processing. In addition to current pre-treatment techniques and their technical, environmental and economic implications, chapters included also further examine the particularities of conversion processes for bioethanol, biobutanol and biodiesel through chemical, biochemical and combined approaches. Finally, the book looks into concepts and tools for techno-economic and environmental analysis, which include supply chain assessment, by-products, zero-waste techniques and process evaluation and optimization. Lignocellulosic Biomass to Liquid Biofuels is particularly useful for researchers in the field of liquid biofuels seeking alternative chemical and biochemical pathways or those interested advanced methods to calculate maximum yield for each process and methods to simulate the implications and costs of scaling up. Furthermore, with the introduction provided by this volume, researchers and graduate students entering the field will be able to quickly get up to speed and identify knowledge gaps in existing and upcoming technology the book’s comprehensive overview. Examines the state-of-the-art technology for liquid biofuels production from lignocellulosic biomass Provides a comprehensive overview of the existing chemical and biochemical processes for second generation biofuel conversion Presents tools for the techno-economic and environmental analysis of technologies, as well as for the scale-up simulation of conversion processes







Biological Concerstion of Biomass for Fuels and Chemicals


Book Description

This book covers biomass modification to facilitate the industrial degradation processing and other characteristics of feedstocks and new technologies for the conversion of lignocelluloses into biofuels and other products.




Biomass Sugars for Non-Fuel Applications


Book Description

Biomass-derived sugars provide a rich, renewable feedstock for a diverse range of chemicals, making them a promising and feasible source for the sustainable manufacture of a variety of valuable products. Exploring green sugar-based technologies beyond their applications in fuels, this book provides an overview of sugar-based technologies, describing their challenges and opportunities. It covers transformations of sugars into green chemicals in pharmaceuticals, biodegradable polymers and surfactants. A special chapter is dedicated to the conversion of biomass into sugars, which is a crucial step in the sustainable utilization of sugars. The book is a valuable resource for chemists and chemical engineers working to develop greener synthetic routes to chemicals and pharmaceuticals.




Biorefinery: From Biomass to Chemicals and Fuels


Book Description

This book provides an introduction to the basic science and technologies for the conversion of biomass (terrestrial and aquatic) into chemicals and fuels, as well as an overview of innovations in the field. The entire value chain for converting raw materials into platform molecules and their transformation into final products are presented in detail. Both cellulosic and oleaginous biomass are considered. The book contains contributions by both academic scientists and industrial technologists so that each topic combines state-of-the-art scientific knowledge with innovative technologies relevant to chemical industries. Selected topics include: Refinery of the future: feedstock, processes, products The terrestrial and aquatic biomass production and properties Chemical technologies and biotechnologies for the conversion of cellulose, hemicellulose, lignine, algae, residual biomass Thermal, catalytic and enzymatic conversion of biomass Production of chemicals, polymeric materials, fuels (biogas, biodiesel, bioethanol, biohydrogen) Policy aspects of biomass product chains LCA applied to the energetic, economic and environmental evaluation of the production of fuels from biomass: ethanol, biooil and biodiesel, biogas, biohydrogen




Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals


Book Description

Plant biomass is attracting increasing attention as a sustainable resource for large-scale production of renewable fuels and chemicals. However, in order to successfully compete with petroleum, it is vital that biomass conversion processes are designed to minimize costs and maximize yields. Advances in pretreatment technology are critical in order to develop high-yielding, cost-competitive routes to renewable fuels and chemicals. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals presents a comprehensive overview of the currently available aqueous pretreatment technologies for cellulosic biomass, highlighting the fundamental chemistry and biology of each method, key attributes and limitations, and opportunities for future advances. Topics covered include: • The importance of biomass conversion to fuels • The role of pretreatment in biological and chemical conversion of biomass • Composition and structure of biomass, and recalcitrance to conversion • Fundamentals of biomass pretreatment at low, neutral and high pH • Ionic liquid and organosolv pretreatments to fractionate biomass • Comparative data for application of leading pretreatments and effect of enzyme formulations • Physical and chemical features of pretreated biomass • Economics of pretreatment for biological processing • Methods of analysis and enzymatic conversion of biomass streams • Experimental pretreatment systems from multiwell plates to pilot plant operations This comprehensive reference book provides an authoritative source of information on the pretreatment of cellulosic biomass to aid those experienced in the field to access the most current information on the topic. It will also be invaluable to those entering the growing field of biomass conversion.