Enzyme-Catalyzed Electron and Radical Transfer


Book Description

Dramatic advances have been made in recent years in the field of redox enzymology which has resulted in an increase of research activities. This volume will cover the recent milestone developments in this field by leading experts, uniting theory and experiment, and selecting contributions to illustrate important aspects of the mechanisms of electron and radical transfer in proteins. Features: A demonstration of the key principles controlling biological redox reactions; Experimental studies of `simple' soluble systems in various enzyme familiies to illustrate concepts in the control of electron transfer reactions; Detail of advances made in membrane electron transfer through structural descriptions of key membrane-embedded proteins; Appeal to those interested in the design and use of redox enzymes, from academics to industrialists.




Chemistry and Biochemistry of B12


Book Description

A Definitive New Reference for the Latest Advances in B_12 Chemistry and Biochemistry Over the past decade, the field of B_12 research has been revolutionized by such major breakthroughs as the unraveling of the entire biosynthetic pathway for this important vitamin. This comprehensive compendium surveys the wealth of information that has accumulated, covering in one volume virtually all aspects of the field-from physical and inorganic chemistry to enzymology, microbiology, medicine, and diagnostic and therapeutic applications. Edited by Dr. Ruma Banerjee, a highly respected and active member of the B_12 community, this work provides B_12 researchers with a dependable and up-to-date reference on the subject. Leading authorities from five continents explore such new areas as the structural biology of B_12-dependent enzymes, free-radical-mediated reaction mechanisms, biosynthesis, and much more. The role of B_12 in nutrition and disease, and B_12 transport, are also thoroughly examined. Complete with color illustrations and extensive references, Chemistry and Biochemistry of B_12 is a one-of-a-kind resource for biochemists, biophysicists, spectroscopists, microbiologists, molecular biologists, and anyone with an interest in "nature's most beautiful cofactor."




Quantum Tunnelling in Enzyme-catalysed Reactions


Book Description

In recent years, there has been an explosion in knowledge and research associated with the field of enzyme catalysis and H-tunneling. Rich in its breath and depth, this introduction to modern theories and methods of study is suitable for experienced researchers those new to the subject. Edited by two leading experts, and bringing together the foremost practitioners in the field, this up-to-date account of a rapidly developing field sits at the interface between biology, chemistry and physics. It covers computational, kinetic and structural analysis of tunnelling and the synergy in combining these methods (with a major focus on H-tunneling reactions in enzyme systems). The book starts with a brief overview of proton and electron transfer history by Nobel Laureate, Rudolph A. Marcus. The reader is then guided through chapters covering almost every aspect of reactions in enzyme catalysis ranging from descriptions of the relevant quantum theory and quantum/classical theoretical methodology to the description of experimental results. The theoretical interpretation of these large systems includes both quantum mechanical and statistical mechanical computations, as well as simple more approximate models. Most of the chapters focus on enzymatic catalysis of hydride, proton and H" transfer, an example of the latter being proton coupled electron transfer. There is also a chapter on electron transfer in proteins. This is timely since the theoretical framework developed fifty years ago for treating electron transfers has now been adapted to H-transfers and electron transfers in proteins. Accessible in style, this book is suitable for a wide audience but will be particularly useful to advanced level undergraduates, postgraduates and early postdoctoral workers.




Flavin-Dependent Enzymes: Mechanisms, Structures and Applications


Book Description

The Enzymes, Volume 47, highlights new advances in the field, with this new volume presenting interesting chapters on The Multipurpose Family of Oxidases, Vanillyl alcohol oxidase, Choline oxidases, Aryl alcohol oxidase, D- and L-amino acid oxidases, Sugar oxidases, Phenolic Compounds hydroxylases, Baeyer-Villiger Monooxygenases, Flavin-dependent halogenases, Flavin-dependent dehalogenases, Styrene Monooxygenases, Bacterial luciferases, Cellobiose Dehydrogenases, Prenylated flavoenzymes, Ene-reductases, Flavoenzymes in Biocatalysis. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in The Enzymes series




Redox-Active Ligands


Book Description

Redox-Active Ligands Authoritative resource showcasing a new family of ligands that can lead to better catalysts and promising applications in organic synthesis Redox-Active Ligands gives a comprehensive overview of the unique features of redox-active ligands, describing their structure and synthesis, the characterization of their coordination complexes, and important applications in homogeneous catalysis. The work reflects the diversity of the subject by including ongoing research spanning coordination chemistry, organometallic chemistry, bioinspired catalysis, proton and electron transfer, and the ability of such ligands to interact with early and late transition metals, lanthanides, and actinides. The book is divided into three parts, devoted to introduction and concepts, applications, and case studies. After the introduction on key concepts related to the field, and the different types of ligands and complexes in which ligand-centered redox activity is commonly observed, mechanistic and computational studies are described. The second part focuses on catalytic applications of redox-active complexes, including examples from radical transformations, coordination chemistry and organic synthesis. Finally, case studies of redox-active guanidine ligands, and of lanthanides and actinides are presented. Other specific sample topics covered include: An overview of the electronic features of redox-active ligands, covering their historical perspective and biological background The versatility and mode of action of redox-active ligands, which sets them apart from more classic and tunable ligands such as phosphines or N-heterocyclic carbenes Preparation and catalytic applications of complexes of stable N-aryl radicals Metal complexes with redox-active ligands in H+/e- transfer transformations By providing up-to-date information on important concepts and applications, Redox-Active Ligands is an essential reading for researchers working in organometallic and coordination chemistry, catalysis, organic synthesis, and (bio)inorganic chemistry, as well as newcomers to the field.







Organic Chemistry of Enzyme-Catalyzed Reactions, Revised Edition-


Book Description

The Organic Chemistry of Enzyme-Catalyzed Reactions is not a book on enzymes, but rather a book on the general mechanisms involved in chemical reactions involving enzymes. An enzyme is a protein molecule in a plant or animal that causes specific reactions without itself being permanently altered or destroyed. This is a revised edition of a very successful book, which appeals to both academic and industrial markets. Illustrates the organic mechanism associated with each enzyme-catalyzed reaction Makes the connection between organic reaction mechanisms and enzyme mechanisms Compiles the latest information about molecular mechanisms of enzyme reactions Accompanied by clearly drawn structures, schemes, and figures Includes an extensive bibliography on enzyme mechanisms covering the last 30 years Explains how enzymes can accelerate the rates of chemical reactions with high specificity Provides approaches to the design of inhibitors of enzyme-catalyzed reactions Categorizes the cofactors that are appropriate for catalyzing different classes of reactions Shows how chemical enzyme models are used for mechanistic studies Describes catalytic antibody design and mechanism Includes problem sets and solutions for each chapter Written in an informal and didactic style




ENZYMES: Catalysis, Kinetics and Mechanisms


Book Description

This enzymology textbook for graduate and advanced undergraduate students covers the syllabi of most universities where this subject is regularly taught. It focuses on the synchrony between the two broad mechanistic facets of enzymology: the chemical and the kinetic, and also highlights the synergy between enzyme structure and mechanism. Designed for self-study, it explains how to plan enzyme experiments and subsequently analyze the data collected. The book is divided into five major sections: 1] Introduction to enzymes, 2] Practical aspects, 3] Kinetic Mechanisms, 4] Chemical Mechanisms, and 5] Enzymology Frontiers. Individual concepts are treated as stand-alone chapters; readers can explore any single concept with minimal cross-referencing to the rest of the book. Further, complex approaches requiring specialized techniques and involved experimentation (beyond the reach of an average laboratory) are covered in theory with suitable references to guide readers. The book provides students, researchers and academics in the broad area of biology with a sound theoretical and practical knowledge of enzymes. It also caters to those who do not have a practicing enzymologist to teach them the subject.




Organic Free Radicals


Book Description




Transition Metal-Catalyzed Carbene Transformations


Book Description

Presents an up-to-date overview of the rapidly growing field of carbene transformations Carbene transformations have had an enormous impact on catalysis and organometallic chemistry. With the growth of transition metal-catalyzed carbene transformations in recent decades, carbene transformations are today an important compound class in organic synthesis as well as in the pharmaceutical and agrochemical industries. Edited by leading experts in the field, Transition Metal-Catalyzed Carbene Transformations is a thorough summary of the most recent advances in the rapidly expanding research area. This authoritative volume covers different reaction types such as ring forming reactions and rearrangement reactions, details their conditions and properties, and provides readers with accurate information on a wide range of carbene reactions. Twelve in-depth chapters address topics including carbene C-H bond insertion in alkane functionalization, the application of engineered enzymes in asymmetric carbene transfer, progress in transition-metal-catalyzed cross-coupling using carbene precursors, and more. Throughout the text, the authors highlight novel catalytic systems, transformations, and applications of transition-metal-catalyzed carbene transfer. Highlights the dynamic nature of the field of transition-metal-catalyzed carbene transformations Summarizes the catalytic radical approach for selective carbene cyclopropanation, high enantioselectivity in X-H insertions, and bio-inspired carbene transformations Introduces chiral N,N'-dioxide and chiral guanidine-based catalysts and different transformations with gold catalysis Discusses approaches in cycloaddition reactions with metal carbenes and polymerization with carbene transformations Outlines multicomponent reactions through gem-difunctionalization and transition-metal-catalyzed cross-coupling using carbene precursors Transition Metal-Catalyzed Carbene Transformations is essential reading for all chemists involved in organometallics, including organic and inorganic chemists, catalytic chemists, and chemists working in industry.