Drug Discovery in Cancer Epigenetics


Book Description

Drug Discovery in Cancer Epigenetics is a practical resource for scientists involved in the discovery, testing, and development of epigenetic cancer drugs. Epigenetic modifications can have significant implications for translational science as biomarkers for diagnosis, prognosis or therapy prediction. Most importantly, epigenetic modifications are reversible and epigenetic players are found mutated in different cancers; therefore, they provide attractive therapeutic targets. There has been great interest in developing and testing epigenetic drugs, which inhibit DNA methyltransferases, histone modifying enzymes or chromatin reader proteins. The first few drugs are already FDA approved and have made their way into clinical settings. This book provides a comprehensive summary of the epigenetic drugs currently available and aims to increase awareness in this area to foster more rapid translation of epigenetic drugs into the clinic. - Highlights the potential of epigenetic alterations in cancer for drug development - Covers the tools and methods for epigenetic drug discovery, preclinical and clinical testing, and clinical implications of epigenetic therapy - Provides important information regarding putative epigenetic targets, epigenetic technologies, networks and consortia for epigenetic drug discovery and routes for translation




Epigenetics for Drug Discovery


Book Description

This book will provide an invaluable guide to epigenetics, one of the fastest moving fields in drug discovery, for medicinal chemists working in academia and in the pharmaceutical industry.




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




Chemical Epigenetics


Book Description

This book presents an authoritative review of the most significant findings about all the epigenetic targets (writers, readers, and erasers) and their implication in physiology and pathology. The book also covers the design, synthesis and biological validation of epigenetic chemical modulators, which can be useful as novel chemotherapeutic agents. Particular attention is given to the chemical mechanisms of action of these molecules and to the drug discovery prose which allows their identification. This book will appeal to students who want to know the extensive progresses made by epigenetics (targets and modulators) in the last years from the beginning, and to specialized scientists who need an instrument to quickly search and check historical and/or updated notices about epigenetics.




Epigenetics in Psychiatry


Book Description

Epigenetics in Psychiatry, Second Edition covers all major areas of psychiatry in which extensive epigenetic research has been performed, fully encompassing a diverse and maturing field, including drug addiction, bipolar disorder, epidemiology, cognitive disorders, and the uses of putative epigenetic-based psychotropic drugs. Uniquely, each chapter correlates epigenetics with relevant advances across genomics, transcriptomics, and proteomics. The book acts as a catalyst for further research in this growing area of psychiatry. This new edition has been fully revised to address recent advances in epigenetic understanding of psychiatric disorders, evoking data consortia (e.g., CommonMind, ATAC-seq), single cell analysis, and epigenome-wide association studies to empower new research. The book also examines epigenetic effects of the microbiome on psychiatric disorders, and the use of neuroimaging in studying the role of epigenetic mechanisms of gene expression. Ongoing advances in epigenetic therapy are explored in-depth. - Fully revised to discuss new areas of research across neuronal stem cells, cognitive disorders, and transgenerational epigenetics in psychiatric disease - Relates broad advances in psychiatric epigenetics to a modern understanding of the genome, transcriptome, and proteins - Catalyzes knowledge discovery in both basic epigenetic biology and epigenetic targets for drug discovery - Provides guidance in research methods and protocols, as well how to employ data from consortia, single cell analysis, and epigenome-wide association studies (EWAS) - Features chapter contributions from international leaders in the field




Epigenetic Cancer Therapy


Book Description

Epigenetic Cancer Therapy unites issues central to a translational audience actively seeking to understand the topic. It is ideal for cancer specialists, including oncologists and clinicians, but also provides valuable information for researchers, academics, students, governments, and decision-makers in the healthcare sector. The text covers the basic background of the epigenome, aberrant epigenetics, and its potential as a target for cancer therapy, and includes individual chapters on the state of epigenome knowledge in specific cancers (including lung, breast, prostate, liver). The book encompasses both large-scale intergovernmental initiatives as well as recent findings across cancer stem cells, rational drug design, clinical trials, and chemopreventative strategies. As a whole, the work articulates and raises the profile of epigenetics as a therapeutic option in the future management of cancer. - Concisely summarizes the therapeutic implications of recent, large-scale epigenome studies, including the cancer epigenome atlas - Discusses targeted isoform specific versus pan-specific inhibitors, a rational drug design approach to epigenetics relevant to pharmacoepigenetic clinical applications - Covers new findings in the interplay between cancer stem cells (CSCs) and drug resistance, demonstrating that epigenetic machinery is a candidate target for the eradication of these CSCs




Epigenetic Biomarkers and Diagnostics


Book Description

Epigenetic Biomarkers and Diagnostics comprises 31 chapters contributed by leading active researchers in basic and clinical epigenetics. The book begins with the basis of epigenetic mechanisms and descriptions of epigenetic biomarkers that can be used in clinical diagnostics and prognostics. It goes on to discuss classical methods and next generation sequencing-based technologies to discover and analyze epigenetic biomarkers. The book concludes with an account of DNA methylation, post-translational modifications and noncoding RNAs as the most promising biomarkers for cancer (i.e. breast, lung, colon, etc.), metabolic disorders (i.e. diabetes and obesity), autoimmune diseases, infertility, allergy, infectious diseases, and neurological disorders. The book describes the challenging aspects of research in epigenetics, and current findings regarding new epigenetic elements and modifiers, providing guidance for researchers interested in the most advanced technologies and tested biomarkers to be used in the clinical diagnosis or prognosis of disease. - Focuses on recent progress in several areas of epigenetics, general concepts regarding epigenetics, and the future prospects of this discipline in clinical diagnostics and prognostics - Describes the importance of the quality of samples and clinical associated data, and also the ethical issues for epigenetic diagnostics - Discusses the advances in epigenomics technologies, including next-generation sequencing based tools and applications - Expounds on the utility of epigenetic biomarkers for diagnosis and prognosis of several diseases, highlighting the study of these biomarkers in cancer, cardiovascular and metabolic diseases, infertility, and infectious diseases - Includes a special section that discusses the relevance of biobanks in the maintenance of high quality biosamples and clinical-associated data, and the relevance of the ethical aspects in epigenetic studies




Epigenetics of Aging and Longevity


Book Description

Epigenetics of Aging and Longevity provides an in-depth analysis of the epigenetic nature of aging and the role of epigenetic factors in mediating the link between early-life experiences and life-course health and aging. Chapters from leading international contributors explore the effect of adverse conditions in early-life that may result in disrupted epigenetic pathways, as well as the potential to correct these disrupted pathways via targeted therapeutic interventions. Intergenerational epigenetic inheritance, epigenetic drug discovery, and the role of epigenetic mechanisms in regulating specific age-associated illnesses—including cancer and cardiovascular, metabolic, and neurodegenerative diseases—are explored in detail. This book will help researchers in genomic medicine, epigenetics, and biogerontology better understand the epigenetic determinants of aging and longevity, and ultimately aid in developing therapeutics to extend the human life-span and treat age-related disease. - Offers a comprehensive overview of the epigenetic nature of aging, as well as the impact of epigenetic factors on longevity and regulating age-related disease - Provides readers with clinical and epidemiological evidence for the role of epigenetic mechanisms in mediating the link between early-life experiences, life-course health and aging trajectory - Applies current knowledge of epigenetic regulatory pathways towards developing therapeutic interventions for age-related diseases and extending the human lifespan




Epigenetic Technological Applications


Book Description

Epigenetic Technological Applications is a compilation of state-of-the-art technologies involved in epigenetic research. Epigenetics is an exciting new field of biology research, and many technologies are invented and developed specifically for epigenetics study. With chapters covering the latest developments in crystallography, computational modeling, the uses of histones, and more, Epigenetic Technological Applications addresses the question of how these new ideas, procedures, and innovations can be applied to current epigenetics research, and how they can keep pushing discovery forward and beyond the epigenetic realm. - Discusses technologies that are critical for epigenetic research and application - Includes epigenetic applications for state-of-the-art technologies - Contains a global perspective on the future of epigenetics




Modern CNS Drug Discovery


Book Description

This textbook provides a comprehensive overview of the currently used concepts, approaches and technologies in the discovery and development of new treatments for the full spectrum of disorders of the central nervous system. It guides the reader through all essential steps, from finding an innovative idea, to the registration of a new drug. Divided into four sections, the book starts by presenting a broad perspective on current approaches in central nervous system (CNS) drug discovery. The second section addresses the generation of ideas for the identification of targets and novel treatment strategies; covers core functions in early discovery, and provides an example of a novel treatment paradigm: brain stimulation. The third section highlights strategies and technologies in translational CNS drug discovery. In an effort to bridge the gap between discovery and clinical development, it also covers brain imaging, EEG and cognitive testing approaches. The fourth section extensively discusses the clinical phase of drug development, covering the basics of early clinical testing for psychopharmacological drugs. The book’s final chapter addresses the registration for newly developed drugs. Written by experts from academia and industry, the book covers important basics and best practices, as well as recent developments in drug discovery. Offering in-depth insights into the world of drug development, it represents essential reading for early researchers who want to prepare for a career in drug discovery in academia or industry.