Epigenetics of B Cells and Antibody Responses


Book Description

Epigenetics is the study of changes in gene activity that are heritable but not caused by changes in the DNA sequence. By modulating gene activities, epigenetic changes regulate cell functions. They include DNA methylation, histone posttranslational modifications and gene silencing by the action of non-coding RNAs, particularly microRNAs. It is now clear that epigenetic changes regulate B cell development. By acting in concert with networks of transcription factors, they modulate the activation of B cell lineage specific gene programs and repress inappropriate gene transcription in particular B cell differentiation states.

A hallmark of B cell development in the bone marrow is the assembly of the B cell receptor (BCR) for antigen through rearrangement of immunoglobulin heavy (IgH) and light (IgL) chain V(D)J genes, as mediated by RAG1/RAG2 recombinases. Ig V(D)J rearrangement critically times the progression from pro-B cell to pre-B cell and, finally, mature B cell. Such progression is modulated by epigenetic marks, such as DNA methylation and histone posttranslational modifications, that increase chromatin accessibility and target RAG/RAG2 to V, D and J DNA. It is also dependent on the expression of multiple microRNAs. Mice deficient in Ago2, which is essential for microRNA biogenesis and function, have B cell development blocked at the pro-B cell stage. In agreement with this, B cell specific ablation of microRNA by B cell-specific knockout of Dicer virtually blocks B cell differentiation at the pro-B to pre-B cell transition.

After mature B cells encounter antigen, changes of the epigenetic landscape are induced by the same stimuli that drive the antibody response; such epigenetic changes underpin the maturation of the antibody response itself. They instruct those B cell differentiation processes, somatic hypermutation (SHM), class switch DNA recombination (CSR) and plasma cell differentiation, that are central to the maturation of the antibody response as well as differentiation of memory B cells. Inducible histone modifications, together with DNA methylation and microRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase (AID), central to SHM and CSR, and B lymphocyte-induced maturation protein-1 (Blimp-1), which is central to plasma cell differentiation.

Combinatorial histone modifications also function as histone codes in the targeting of the CSR and, possibly, the SHM machinery to the Ig locus by recruiting specific adaptors (histone code readers) that can in turn target and/or stabilize CSR/SHM factors. Epigenetic alterations in memory B cells contribute to their functionally distinction from their naive counterparts. Memory B cells inherit epigenetic information from their precursors and acquire new epigenetic marks, which make these resting B cells poised to promptly respond to antigen. The cross/feedback regulation of different epigenetic modifications/elements further increases the complexity of the B cell epigenome, which interacts with the genetic information for precise modulation of gene expression. It is increasingly evident that epigenetic dysregulation in B cells, including aberrant expression of microRNAs, can result in aberrant antibody responses to microbial pathogens, emergence of pathogenic autoantibodies or B cell neoplastic transformation. Epigenetic marks are potential targets for new therapeutics in autoimmunity and B cell malignancy.




Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development


Book Description

During vertebrate hematopoiesis many specialized cell types are formed with vastly different functions such as B cells, T cells, granulocytes, macrophages, erythrocytes and megakaryocytes. To tightly control the enormous proliferative potential of developing blood cells, an intricately balanced signaling and transcription network has evolved that ensures that the different cell types are formed at the right time and in the right numbers. Intricate regulatory mechanisms ensure that blood cells function properly and have a determined life span. Moreover, in the adaptive immune system, long-lived memory cells have evolved that ensure that when pathogens have been seen once they will never cause a problem again. In this book we will therefore make a journey from asking how more primitive organisms use the epigenetic regulatory machinery to balance growth with differentiation control towards digging deep into what controls the function of specialized cells of the human immune system. We will first discover that flies make blood but exist without blood vessels, why fish make blood cells in the kidney and which precise genetic circuitries are required for these developmental pathways. We will then learn the regulatory principles that drive the differentiation of mature blood cells from stem cells and what controls their function in mammals. In the process, we will find out what unites hematopoietic stem cells and endothelial cells. Finally, we will shed light on the molecular mechanisms that either alter hematopoietic cell differentiation or lead to the development of cells with impaired function.




Epigenetic Regulation of Lymphocyte Development


Book Description

The studies described in this volume serve as a starting point to familiarize one self with the multifarious differences in epigenetic designs that orchestrate the progression of developing blood cells. They also may serve as a general paradigm for the mechanisms that underpin the control of eukaryotic gene expression.




Epigenetic Therapy of Cancer


Book Description

The growing knowledge about disturbances of epigenetic gene regulation in hematopoietic stem cell disorders is now being translated into treatment approaches that target the epigenetic defects pharmacologically. This book first presents the latest evidence regarding the epigenetic regulation of hematopoietic stem cell differentiation and hemoglobin production. The significance of DNA methylation abnormalities in hematopoietic disorders and of epigenetic disturbances in lung cancer and other solid tumors is then discussed. A major part of the book, however, relates specifically to the translation of basic research and drug development to clinical applications, and in this context both present and future clinical strategies are considered. Individual chapters are devoted to the use of DNA hypomethylating agents and chromatin-modifying agents, and the treatment of hematologic malignancies and solid tumors by means of epigenetic agents is discussed in detail.




B Cell Receptor Signaling


Book Description

This volume details our current understanding of the architecture and signaling capabilities of the B cell antigen receptor (BCR) in health and disease. The first chapters review new insights into the assembly of BCR components and their organization on the cell surface. Subsequent contributions focus on the molecular interactions that connect the BCR with major intracellular signaling pathways such as Ca2+ mobilization, membrane phospholipid metabolism, nuclear translocation of NF-kB or the activation of Bruton’s Tyrosine Kinase and MAP kinases. These elements orchestrate cytoplasmic and nuclear responses as well as cytoskeleton dynamics for antigen internalization. Furthermore, a key mechanism of how B cells remember their cognate antigen is discussed in detail. Altogether, the discoveries presented provide a better understanding of B cell biology and help to explain some B cell-mediated pathogenicities, like autoimmune phenomena or the formation of B cell tumors, while also paving the way for eventually combating these diseases.







Precision Cancer Therapies, Volume 1


Book Description

A Thorough Compilation of the Many Scientific Breakthroughs in the Ongoing Development of Precision Cancer Therapies Related to Lymphoma Targeting Oncogenic Drivers and Signaling Pathways in Lymphoid Malignancies: From Concept to Practice focuses on lymphoma, an area which has seen a remarkable number of breakthroughs in the ongoing development of precision cancer therapies. Each section on a specific biology or class of drugs has an introductory chapter written by an authority in the field, exclusively focused on the science and its relevance to cancer biology. This approach addresses the need for scientists, physicians, and the private sector to understand the broader context of the extraordinary advances that have produced such astonishing advances in the disease. The work primarily focuses on how to understand and translate fundamental principles of basic science into information that can be directly applied to patients – hence the subtitle, From Concept to Practice. To aid in readers’ comprehension, the first page of each chapter contains a box entitled ‘Take Home Points’. This short text will highlight the major unique points about the information contained within the chapter. Some of the key topics addressed in the work are as follows: Biological basis of the lymphoid malignancies: fundamental principles of lymphomagenesis and molecular classification of lymphoid malignancies Targeting programmed cell death: principles for understanding the many types of cell death and promising combinations of drugs targeting apoptosis Targeting the PI3K pathway: understanding the intricacies of this complex biology and precisely how targeted drugs can be leveraged therapeutically Targeting the cancer epigenome: pharmacologic features of drugs targeting the epigenome and future prospects for targeting various aspects of epigenetic control Targeting the tumour proteome: understanding the mechanisms of protein degradation in cancer including both older drugs like proteasome inhibitors, and newer PROTAC based approaches Written primarily for scientists and physicians in both the public and private sectors, Targeting Oncogenic Drivers and Signaling Pathways in Lymphoid Malignancies: From Concept to Practice is a comprehensive reference work for those interested in the growing area of Precision Cancer Therapies. Seamlessly integrating the basic and applied science, this volume will be an indispensable reference for those interested in translating the most important advances in science to innovative novel treatments for patients.




Epigenetic Regulation of Developmentally Regulated B Cell Gene Silencing and Specificity of DCK TM for L-FMAU


Book Description

Two studies were undertaken that investigate the implications of small biochemical alterations in living systems. First, epigenetic mechanisms have been shown to control gene expression and can permanently silence a gene. We investigate the role of the epigenetic mechanisms DNA methylation and histone deacetylation in the stage specific silencing of the gene VpreB. This gene must be expressed and extinguished at specific stages for the healthy development of the B cell. Reactivation of VpreB gene expression was observed after inhibiting epigenetic mechanisms in Ramos cells in which VpreB is permanently silenced. Furthermore, no DNA methylation was found within the promoter region of VpreB in Nalm6 cells in which VpreB is expressed. Therefore, DNA methylation and histone deacetylation was observed to be correlated with the onset of VpreB silencing in cell lines. Next, the author explores the effects on substrate specificity of single point mutations within the active site of the enzyme deoxycytidine kinase (dCK). dCK is the rate limiting step for the salvage of several nucleosides as an alternate to de novo nucleotide synthesis. Furthermore, dCK is responsible for the activation of several chemotherapeutic nucleoside analog prodrugs such as gemcitibine. By making three mutations (A100V, R104M, D133A) within the active site of dCK, we were able to successfully increase dCK's specificity for the thymidine analog 2'-deoxy-2'-5-methyl-1-[beta]-L-arabinofuranosyluracil (L-FMAU) that can be used for positron emission tomography (PET), a medical imaging modality. The author also confirmed previous results that the three mutations can broaden dCK's specificity for thymidine. These results indicate that dCK's activity can be easily manipulated to increase specificity and turnover for thymidine analogs including L-FMAU.