Epigenetics of B Cells and Antibody Responses


Book Description

Epigenetics is the study of changes in gene activity that are heritable but not caused by changes in the DNA sequence. By modulating gene activities, epigenetic changes regulate cell functions. They include DNA methylation, histone posttranslational modifications and gene silencing by the action of non-coding RNAs, particularly microRNAs. It is now clear that epigenetic changes regulate B cell development. By acting in concert with networks of transcription factors, they modulate the activation of B cell lineage specific gene programs and repress inappropriate gene transcription in particular B cell differentiation states.

A hallmark of B cell development in the bone marrow is the assembly of the B cell receptor (BCR) for antigen through rearrangement of immunoglobulin heavy (IgH) and light (IgL) chain V(D)J genes, as mediated by RAG1/RAG2 recombinases. Ig V(D)J rearrangement critically times the progression from pro-B cell to pre-B cell and, finally, mature B cell. Such progression is modulated by epigenetic marks, such as DNA methylation and histone posttranslational modifications, that increase chromatin accessibility and target RAG/RAG2 to V, D and J DNA. It is also dependent on the expression of multiple microRNAs. Mice deficient in Ago2, which is essential for microRNA biogenesis and function, have B cell development blocked at the pro-B cell stage. In agreement with this, B cell specific ablation of microRNA by B cell-specific knockout of Dicer virtually blocks B cell differentiation at the pro-B to pre-B cell transition.

After mature B cells encounter antigen, changes of the epigenetic landscape are induced by the same stimuli that drive the antibody response; such epigenetic changes underpin the maturation of the antibody response itself. They instruct those B cell differentiation processes, somatic hypermutation (SHM), class switch DNA recombination (CSR) and plasma cell differentiation, that are central to the maturation of the antibody response as well as differentiation of memory B cells. Inducible histone modifications, together with DNA methylation and microRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase (AID), central to SHM and CSR, and B lymphocyte-induced maturation protein-1 (Blimp-1), which is central to plasma cell differentiation.

Combinatorial histone modifications also function as histone codes in the targeting of the CSR and, possibly, the SHM machinery to the Ig locus by recruiting specific adaptors (histone code readers) that can in turn target and/or stabilize CSR/SHM factors. Epigenetic alterations in memory B cells contribute to their functionally distinction from their naive counterparts. Memory B cells inherit epigenetic information from their precursors and acquire new epigenetic marks, which make these resting B cells poised to promptly respond to antigen. The cross/feedback regulation of different epigenetic modifications/elements further increases the complexity of the B cell epigenome, which interacts with the genetic information for precise modulation of gene expression. It is increasingly evident that epigenetic dysregulation in B cells, including aberrant expression of microRNAs, can result in aberrant antibody responses to microbial pathogens, emergence of pathogenic autoantibodies or B cell neoplastic transformation. Epigenetic marks are potential targets for new therapeutics in autoimmunity and B cell malignancy.







Epigenetic Regulation of Lymphocyte Development


Book Description

The studies described in this volume serve as a starting point to familiarize one self with the multifarious differences in epigenetic designs that orchestrate the progression of developing blood cells. They also may serve as a general paradigm for the mechanisms that underpin the control of eukaryotic gene expression.







Epigenetic Regulation of Lymphocyte Development and Transformation


Book Description

Cell identity and function rely on intricately controlled programs of gene regulation, alterations of which underlie many diseases, including cancer. Epigenetic analyses of normal and diseased cells have started to elucidate different facets of epigenetic mechanisms for gene regulation. These include changes in nucleosome density, histone modifications, factor binding and chromosomal architecture. All of these aspects contribute to the activities of regulatory elements conferring promoter, enhancer and insulator functions and the cis-regulatory circuits formed by these elements. Despite this progress, an urgent need remains to profile these features and to study how they cooperatively function in normal and pathogenic settings. Here, using the mouse T cell receptor beta locus as a model, we first quantified 13 distinct features, including transcription, chromatin environment, spatial proximity, and predicted qualities of recombination signal sequences (RSS), to assess their relative contributions in shaping recombination frequencies of V[beta] gene segments. We found that the most predictive parameters are chromatin modifications associated with transcription, but recombination efficiencies are largely independent of spatial proximity. These findings enabled us to build a novel computational model predicting V[beta] usage that uses a minimum set of five features. Expanding on these results, we applied chromatin profiling and computational algorithms to other mouse antigen receptor loci, to classify and identify novel regulatory elements. We defined 38 chromatin states that reflect distinct regulatory potentials. One of these states corresponded to known enhancers and also identified new enhancer candidates in immunoglobulin loci. Indeed, all four candidate elements exhibited enhancer activity in B cells when subjected to functional assays, validating that our chromatin profiling and computational analyses successfully identified enhancers in antigen receptor loci. Finally, we translated these approaches to human B cell lymphoma to predict pathogenic cis-regulatory circuits composed of dysregulated enhancers and target genes. We then selected and functionally dissected a pathogenic cis-regulatory circuit for the mitosis-associated kinase, NEK6, which is overexpressed in human B cell lymphoma. We found that only a subset of predicted enhancers is required to maintain elevated NEK6 expression in transformed B cells. Surprisingly, a B cell-specific super-enhancer is completely dispensable to maintain NEK6 expression and chromatin architecture within its chromosomal neighborhood. Moreover, we showed that a cluster of binding sites for the CTCF architectural factor serves as a chromatin boundary, blocking the functional impact of a NEK6 regulatory hub on neighboring genes. These results emphasize the necessity to test predicted cis-regulatory circuits, especially the roles of enhancers and super-enhancers, when prioritizing elements as targets for epigenetic-based therapies. Our findings collectively pave the way for future investigations into the roles of cis-regulatory and architectural elements in regulating gene expression programs during normal development or pathogenesis.







Encyclopedia of Cell Biology


Book Description

The Encyclopedia of Cell Biology, Four Volume Set offers a broad overview of cell biology, offering reputable, foundational content for researchers and students across the biological and medical sciences. This important work includes 285 articles from domain experts covering every aspect of cell biology, with fully annotated figures, abundant illustrations, videos, and references for further reading. Each entry is built with a layered approach to the content, providing basic information for those new to the area and more detailed material for the more experienced researcher. With authored contributions by experts in the field, the Encyclopedia of Cell Biology provides a fully cross-referenced, one-stop resource for students, researchers, and teaching faculty across the biological and medical sciences. Fully annotated color images and videos for full comprehension of concepts, with layered content for readers from different levels of experience Includes information on cytokinesis, cell biology, cell mechanics, cytoskeleton dynamics, stem cells, prokaryotic cell biology, RNA biology, aging, cell growth, cell Injury, and more In-depth linking to Academic Press/Elsevier content and additional links to outside websites and resources for further reading A one-stop resource for students, researchers, and teaching faculty across the biological and medical sciences




Mobile DNA III


Book Description

An exploration of the raw power of genetic material to refashion itself to any purpose... Virtually all organisms contain multiple mobile DNAs that can move from place to place, and in some organisms, mobile DNA elements make up a significant portion of the genome. Mobile DNA III provides a comprehensive review of recent research, including findings suggesting the important role that mobile elements play in genome evolution and stability. Editor-in-Chief Nancy L. Craig assembled a team of multidisciplinary experts to develop this cutting-edge resource that covers the specific molecular mechanisms involved in recombination, including a detailed structural analysis of the enzymes responsible presents a detailed account of the many different recombination systems that can rearrange genomes examines the tremendous impact of mobile DNA in virtually all organisms Mobile DNA III is valuable as an in-depth supplemental reading for upper level life sciences students and as a reference for investigators exploring new biological systems. Biomedical researchers will find documentation of recent advances in understanding immune-antigen conflict between host and pathogen. It introduces biotechnicians to amazing tools for in vivo control of designer DNAs. It allows specialists to pick and choose advanced reviews of specific elements and to be drawn in by unexpected parallels and contrasts among the elements in diverse organisms. Mobile DNA III provides the most lucid reviews of these complex topics available anywhere.




Epigenetic Regulation of Lymphocyte Development


Book Description

The studies described in this volume serve as a starting point to familiarize one self with the multifarious differences in epigenetic designs that orchestrate the progression of developing blood cells. They also may serve as a general paradigm for the mechanisms that underpin the control of eukaryotic gene expression.




Normal and Malignant B-Cell


Book Description

Normal and Malignant B-Cell is a collection of harmonious chapters contributed by different authors. This book sets out to describe the B-cell during different stages of ontogeny and the molecular mechanisms of its antigen receptor diversity. It also discusses the main clinical and etiopathogenic aspects when it is transformed into a malignant cell. The book will be interesting and useful for clinicians, biologists, researchers, teachers, and graduate students of both doctoral and master's degrees in the field of immunology.