Epigenetics and Regeneration


Book Description

Epigenetics and Regeneration compiles the first foundational reference on epigenetic mechanisms governing tissue development, repair, homeostasis, and regeneration, as well as pathways to employ these mechanisms in clinical practice and translational science. In this book, life science researchers, clinicians, and students will discover an interdisciplinary resource bringing together common themes in the field, background overviews, research methods, recent advances, and opportunities for drug discovery. Throughout this volume, special attention is paid to pre-clinical and first clinical studies aimed at increasing the regenerative potential of damaged tissues by epigenetic drugs, as well as innovative, discipline spanning strategies to enhance cell reprogramming. As an all-inclusive, evidence-based volume, Epigenetics and Regeneration will stimulate discussion and boost new research in this fascinating and impactful area of translational epigenetics. - Provides a foundational overview of epigenetics in regenerative medicine - Examines epigenetic components of tissue regeneration for a variety of organ systems and tissue types, as well as current attempts to employ these mechanisms in clinical practice - Offers researchers, students, clinicians, and pharmacologists the tools they need to enhance tissue development, repair, homeostasis, and regeneration and explore new epigenetic therapeutic pathways - Features chapter contributions from leading international researchers and clinicians in the fields of epigenetics and regenerative medicine




Epigenetic Regulation of Skin Development and Regeneration


Book Description

This indispensable volume highlights recent studies identifying epigenetic mechanisms as essential regulators of skin development, stem cell activity and regeneration. Chapters are contributed by leading experts and promote the skin as an accessible model system for studying mechanisms that control organ development and regeneration. The timely discussions contained throughout are of broad relevance to other areas of biology and medicine and can help inform the development of novel therapeutics for skin disorders as well as new approaches to skin regeneration that target the epigenome. Part of the highly successful Stem Cells and Regenerative Medicine series, Epigenetic Regulation of Skin Development and Regeneration uncovers the fundamental significance of epigenetic mechanisms in skin development and regeneration, and emphasizes the development of new therapies for a number of skin disorders, such as pathological conditions of epidermal differentiation, pigmentation and carcinogenesis. At least six categories of researchers will find this book essential, including stem cell, developmental, hair follicle or molecular biologists, and gerontologists or clinical dermatologists.




Handbook of Epigenetics


Book Description

Handbook of Epigenetics: The New Molecular and Medical Genetics, Second Edition, provides a comprehensive analysis of epigenetics, from basic biology, to clinical application. Epigenetics is considered by many to be the new genetics in that many biological phenomena are controlled, not through gene mutations, but rather through reversible and heritable epigenetic processes. These epigenetic processes range from DNA methylation to prions. The biological processes impacted by epigenetics are vast and encompass effects in lower organisms and humans that include tissue and organ regeneration, X-chromosome inactivation, stem cell differentiation, genomic imprinting, and aging. The first edition of this important work received excellent reviews; the second edition continues its comprehensive coverage adding more current research and new topics based on customer and reader reviews, including new discoveries, approved therapeutics, and clinical trials. From molecular mechanisms and epigenetic technology, to discoveries in human disease and clinical epigenetics, the nature and applications of the science is presented for those with interests ranging from the fundamental basis of epigenetics, to therapeutic interventions for epigenetic-based disorders. - Timely and comprehensive collection of fully up-to-date reviews on epigenetics that are organized into one volume and written by leading figures in the field - Covers the latest advances in many different areas of epigenetics, ranging from basic aspects, to technologies, to clinical medicine - Written at a verbal and technical level that can be understood by scientists and college students - Updated to include new epigenetic discoveries, newly approved therapeutics, and clinical trials




Introduction to Epigenetics


Book Description

This open access textbook leads the reader from basic concepts of chromatin structure and function and RNA mechanisms to the understanding of epigenetics, imprinting, regeneration and reprogramming. The textbook treats epigenetic phenomena in animals, as well as plants. Written by four internationally known experts and senior lecturers in this field, it provides a valuable tool for Master- and PhD- students who need to comprehend the principles of epigenetics, or wish to gain a deeper knowledge in this field. After reading this book, the student will: Have an understanding of the basic toolbox of epigenetic regulation Know how genetic and epigenetic information layers are interconnected Be able to explain complex epigenetic phenomena by understanding the structures and principles of the underlying molecular mechanisms Understand how misregulated epigenetic mechanisms can lead to disease




Epigenetics of Aging


Book Description

Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.




Epigenetics in Plants of Agronomic Importance: Fundamentals and Applications


Book Description

Over the past decades, chromatin remodelling has emerged as an important regulator of gene expression and plant defense. This book provides a detailed understanding of the epigenetic mechanisms involved in plants of agronomic importance. The information presented here is significant because it is expected to provide the knowledge needed to develop in the future treatments to manipulate and selectively activate/inhibit proteins and metabolic pathways to counter pathogens, to treat important diseases and to increase crop productivity. New approaches of this kind and the development of new technologies will certainly increase our knowledge of currently known post-translational modifications and facilitate the understanding of their roles in, for example, host-pathogen interactions and crop productivity. Furthermore, we provide important insight on how the plant epigenome changes in response to developmental or environmental stimuli, how chromatin modifications are established and maintained, to which degree they are used throughout the genome, and how chromatin modifications influence each another.




Regenerative Medicine and Stem Cell Biology


Book Description

This textbook covers the basic aspects of stem cell research and applications in regenerative medicine. Each chapter includes a didactic component and a practical section. The book offers readers insights into: How to identify the basic concepts of stem cell biology and the molecular regulation of pluripotency and stem cell development. How to produce induced pluripotent stem cells (iPSCs) and the basics of transfection. The biology of adult stem cells, with particular emphasis on mesenchymal stromal cells and hematopoietic stem cells, and the basic mechanisms that regulate them. How cancer stem cells arise and metastasize, and their properties. How to develop the skills needed to isolate, differentiate and characterize adult stem The clinical significance of stem cell research and the potential problems that need to be overcome. Evaluating the use of stem cells for tissue engineering and therapies (the amniotic membrane) The applications of bio-nanotechnology in stem cell research. How epigenetic mechanisms, including various DNA modifications and histone dynamics, are involved in regulating the potentiality and differentiation of stem cells. The scientific methods, ethical considerations and implications of stem cell research.




Gene Regulation, Epigenetics and Hormone Signaling


Book Description

The first of its kind, this reference gives a comprehensive but concise introduction to epigenetics before covering the many interactions between hormone regulation and epigenetics at all levels. The contents are very well structured with no overlaps between chapters, and each one features supplementary material for use in presentations. Throughout, major emphasis is placed on pathological conditions, aiming at the many physiologists and developmental biologists who are familiar with the importance and mechanisms of hormone regulation but have a limited background in epigenetics.




Clinical Approaches in Endodontic Regeneration


Book Description

This richly illustrated book combines explanation of the scientific base underpinning vital pulp treatment with description of current and emerging trends in clinical practice. It guides the reader through modern views on pulp diagnostics, deep caries, and pulp exposure management, leading to an analysis of the biological aspects of regenerative techniques such as angiogenesis, neurogenesis, inflammation, and epigenetics. In the later chapters, practical considerations relating to bioengineering, biomaterial choice, revitalization, and stem cell-based procedures are discussed and their likely therapeutic impact considered. Aimed at dental students, postgraduates, and research-minded dental practitioners, this translational book summarizes state-of-the-art scientific knowledge on dentin–pulp interactions and regenerative endodontics, while highlighting the opportunities to incorporate recent developments into everyday practice. Readers will also find extensive discussion of potential future developments and research avenues relating to each aspect of this exciting and rapidly developing field.




Paramecium


Book Description

The techniques used to decipher the genetic makeup of species as well as epigenetic mechanisms are essential for explaining life forms and studying their DNA. As a eukaryotic model, Paramecium is well suited for genetic analysis. Taking a rather unconventional view of genetics, Paramecium: Genetics and Epigenetics explores how to use this protozoan as a basis for studying complex cells. The book discusses various aspects of Paramecium, including the cortex, the cytoplasm, nuclei, asexual fission, conjugation, autogamy,macronuclear regeneration, cytogamy, life cycle phases, and behavior. It examines the assorted mating types of the genus and how these mating types are determined. It also elucidates some techniques that identify genetically defined genes with the DNA from a library that comprises those genes and details the genetic, epigenetic, chemical, and molecular facets of several different traits. In addition, the authors chronicle the history and reemergence of investigating RNA and DNA in Paramecium. With many powerful tools now available, Paramecium research is entering a new frontier in molecular biology. A full account of Paramecium genetics, this book presents a wealth of time-consuming observations and remarkable phenomena that will lead to a better understanding of complex cells.