Epitaxial Graphene on Silicon Carbide


Book Description

This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.




Epitaxial Graphene on Silicon Carbide


Book Description

This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It comprehensively addresses all fundamental aspects relevant for the study and technology development of EG materials and their applications, using quantum Hall effect studies and probe techniques such as scanning tunneling microscopy and atomic resolution imaging based on transmission electron microscopy. It presents the state of the art of the synthesis of EG-SiC and profusely explains it as a function of SiC substrate characteristics such as polytype, polarity, and wafer cut as well as the in situ and ex situ conditioning techniques, including H2 pre-deposition annealing and chemical mechanical polishing. It also describes growth studies, including the most popular characterization techniques, such as ultrahigh-vacuum, partial-pressure, or graphite-cap sublimation techniques, for high-quality controlled deposition. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia.







Epitaxial Graphene on Silicon Carbide


Book Description

"This is the first book dedicated exclusively to epitaxial graphene on silicon carbide (EG-SiC). It addresses comprehensively all aspects relevant for the study and technology development of EG materials and their applications. It includes the state of the art on the synthesis of EG-SiC, which is profusely explained as a function of SiC substrate characteristics, such as polytype, polarity, and wafer cut, as well as both in situ and ex situ conditioning techniques, including H2 pre-deposition annealing, chemical mechanical polishing, etc. It generously describes growth studies including the most popular techniques for high quality and controlled deposition such as ultrahigh vacuum-processing, partial-pressure, or graphite cap controlled-sublimation techniques. The book includes relevant examples on synthesis and characterization techniques as well as device fabrication processing and performance and complements them with theoretical modeling and simulation studies, which are helpful in the fundamental comprehension of EG-SiC substrates and their potential use in electronic applications. It addresses the fundamental aspects of EG-SiC using quantum Hall effect studies as well as probe techniques, such as scanning tunneling microscopy or atomic resolution imaging based on transmission electron microscopy. It comprises chapters that present reviews and vision on the current state of the art of experts in physics, electronic engineering, materials science, and nanotechnology from Europe and Asia."--Provided by publisher.




Graphene Nanoelectronics


Book Description

Graphene is a perfectly two-dimensional single-atom thin membrane with zero bandgap. It has attracted huge attention due to its linear dispersion around the Dirac point, excellent transport properties, novel magnetic characteristics, and low spin-orbit coupling. Graphene and its nanostructures may have potential applications in spintronics, photonics, plasmonics and electronics. This book brings together a team of experts to provide an overview of the most advanced topics in theory, experiments, spectroscopy and applications of graphene and its nanostructures. It covers the state-of-the-art in tutorial-like and review-like manner to make the book useful not only to experts, but also newcomers and graduate students.




Silicon Carbide Biotechnology


Book Description

Silicon Carbide (SiC) is a wide-band-gap semiconductor biocompatible material that has the potential to advance advanced biomedical applications. SiC devices offer higher power densities and lower energy losses, enabling lighter, more compact and higher efficiency products for biocompatible and long-term in vivo applications ranging from heart stent coatings and bone implant scaffolds to neurological implants and sensors. The main problem facing the medical community today is the lack of biocompatible materials that are also capable of electronic operation. Such devices are currently implemented using silicon technology, which either has to be hermetically sealed so it cannot interact with the body or the material is only stable in vivo for short periods of time. For long term use (permanent implanted devices such as glucose sensors, brain-machine-interface devices, smart bone and organ implants) a more robust material that the body does not recognize and reject as a foreign (i.e., not organic) material is needed. Silicon Carbide has been proven to be just such a material and will open up a whole new host of fields by allowing the development of advanced biomedical devices never before possible for long-term use in vivo. This book not only provides the materials and biomedical engineering communities with a seminal reference book on SiC that they can use to further develop the technology, it also provides a technology resource for medical doctors and practitioners who are hungry to identify and implement advanced engineering solutions to their everyday medical problems that currently lack long term, cost effective solutions. Discusses Silicon Carbide biomedical materials and technology in terms of their properties, processing, characterization, and application, in one book, from leading professionals and scientists Critical assesses existing literature, patents and FDA approvals for clinical trials, enabling the rapid assimilation of important data from the current disparate sources and promoting the transition from technology research and development to clinical trials Explores long-term use and applications in vivo in devices and applications with advanced sensing and semiconducting properties, pointing to new product devekipment particularly within brain trauma, bone implants, sub-cutaneous sensors and advanced kidney dialysis devices




2-D Electronic Materials


Book Description

Graphene holds great promise as a material for high-speed electronics, especially as Si technology approaches its performance limits. Growth of epitaxial graphene by thermal decomposition of SiC is considered to be one of the most promising production routes since it has the potential to produce homogenous, wafer-size films directly on a semi-insulating or semiconducting substrate. Furthermore, graphene's planar 2-D structure enables devices and circuit designs with standard top-down lithography and processing techniques. However, the growth mechanism of graphene on SiC is not very well understood and much work remains to be done to improve the morphology, domain size and epitaxial quality of the grown graphene in order to take advantage of the unique properties of the material. This research work was aimed at using a modified CVD chamber in the Cornell University Wide-Bandgap-Semiconductor Laboratory to optimize the growth of epitaxial graphene by controlled decomposition of 6H-SiC(0001) in an argon mediated gas flow at near atmospheric pressure. Grown films were characterized using Raman spectroscopy, atomic force microscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and electrical measurements. Uniform large-area monolayer and few-layer epitaxial graphene were successfully grown on SiC terraces of up to 8 [MICRO SIGN]m wide, and with Hall mobilities of up to 840 cm2/V.s. The as-grown graphene was found to be intrinsically electron doped with sheet carrier density in the range of 3 - 9 x 1012 cm-2. However, certain growth features that tended to disrupt growth by uniform step flow decomposition were observed. These included deep rounded pits at higher temperatures, shallow triangular pits, arrow-like incursions across terraces, finger growths, residual SiC islands on terraces, nucleation of graphene at multiple defect points on terraces, and extra graphene layers at step edges. Further research is required to determine the mechanisms of formation of these features and to determine how they can be eliminated or reduced. For the first time SiC grown epitaxial graphene films, transferred from the substrate by a special process, was imaged in plan-view by TEM. The TEM images, along with selected-area electron diffraction, showed that a bilayer film had the AB Bernal stacking.!




Graphene


Book Description

Graphene: Properties, Preparation, Characterisation and Devices reviews the preparation and properties of this exciting material. Graphene is a single-atom-thick sheet of carbon with properties, such as the ability to conduct light and electrons, which could make it potentially suitable for a variety of devices and applications, including electronics, sensors, and photonics. Chapters in part one explore the preparation of , including epitaxial growth of graphene on silicon carbide, chemical vapor deposition (CVD) growth of graphene films, chemically derived graphene, and graphene produced by electrochemical exfoliation. Part two focuses on the characterization of graphene using techniques including transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Raman spectroscopy. These chapters also discuss photoemission of low dimensional carbon systems. Finally, chapters in part three discuss electronic transport properties of graphene and graphene devices. This part highlights electronic transport in bilayer graphene, single charge transport, and the effect of adsorbents on electronic transport in graphene. It also explores graphene spintronics and nano-electro-mechanics (NEMS). Graphene is a comprehensive resource for academics, materials scientists, and electrical engineers working in the microelectronics and optoelectronics industries. Explores the graphene preparation techniques, including epitaxial growth on silicon carbide, chemical vapor deposition (CVD), chemical derivation, and electrochemical exfoliation Focuses on the characterization of graphene using transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and Raman spectroscopy A comprehensive resource for academics, materials scientists, and electrical engineers




Structured Epitaxial Graphene for Electronics


Book Description

After the pioneering investigations into graphene-based electronics at Georgia Tech, great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an important material for fundamental two-dimensional electron gas physics. Graphene is generally considered to be a strong candidate to succeed silicon as an electronic material. However, to date, it actually has not yet demonstrated capabilities that exceed standard semiconducting materials. One disadvantage of conventionally fabricated graphene devices is that nanoscopically patterned graphene tends to have disordered edges that severely reduce mobilities thereby obviating its advantage over other materials. The other disadvantage is that pristine graphene does not contain a band gap, which is critical for standard field effect transistor to operate. This thesis will show that graphene grown on structured silicon carbide surfaces overcomes the edge roughness and promises to provide an inroad into nanoscale patterning of graphene. High-quality ribbons and rings can be made using this technique.