Equations of State for Strongly Nonideal Fluid Mixtures


Book Description

A new model has been developed for calculation of fluid-phase equilibria of asymmetric mixtures. This local-composition model extends the quasi-chemical theory of Guggenheim (known to correlate well liquid-state activity coefficients) to fluids of all densities. The model can be applied to any equation of state, contains only one new adjustable parameter per binary pair, and can be extended to multicomponent mixtures of large and small molecules by use of the surface areas of the molecules. Although the local-composition model is a nonrandomness approach, all randomness boundary conditions are met. Significant improvement over the random-mixing model is shown for the prediction of vapor-liquid equilibria of methane/water and ethane/water systems.




Equations of State for Fluids and Fluid Mixtures


Book Description

This book has been prepared under the auspices of Commission I.2 on Thermodynamics of the International Union of Pure and Applied Chemistry (IUPAC). The authors of the 18 chapters are all recognized experts in the field. The book gives an up-to-date presentation of equations of state for fluids and fluid mixtures. All principal approaches for developing equations of state are covered. The theoretical basis and practical use of each type of equation is discussed and the strength and weaknesses of each is addressed. Topics addressed include the virial equation of state, cubic equations and generalized van der Waals equations, perturbation theory, integral equations, corresponding stated and mixing rules. Special attention is also devoted to associating fluids, polydisperse fluids, polymer systems, self-assembled systems, ionic fluids and fluids near critical points.







Physical Properties of Molecular Crystals, Liquids, and Glasses


Book Description

Properties of molecules -- Corresponding-states principle -- Molecular crystals including crystalline polymers -- Elastic properties of molecular crystals including polymer crystals -- Transport properties of molecular crystals -- Fusion -- Liquids -- p-v-T properties of the liquid -- Heat capacity of liquids and polymer melts -- Thermal conductivity of non-associated liquids -- Diffusion of liquids -- Viscosity -- Physical properties of molecular glasses -- Catalog of molecular properties -- Computing schemes.




Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs


Book Description

Fluid Phase Behavior for Conventional and Unconventional Oil and Gas Reservoirs delivers information on the role of PVT (pressure-volume-temperature) tests/data in various aspects, in particular reserve estimation, reservoir modeling, flow assurance, and enhanced oil recovery for both conventional and unconventional reservoirs. This must-have reference also prepares engineers on the importance of PVT tests, how to evaluate the data, develop an effective management plan for flow assurance, and gain perspective of flow characterization, with a particular focus on shale oil, shale gas, gas hydrates, and tight oil making. This book is a critical resource for today's reservoir engineer, helping them effectively manage and maximize a company's oil and gas reservoir assets. - Provides tactics on reservoir phase behavior and dynamics with new information on shale oil and gas hydrates - Helps readers Improve on the effect of salt concentration and application to C02-Acid Gas Disposal with content on water-hydrocarbon systems - Provides practical experience with PVT and tuning of EOS with additional online excel spreadsheet examples




Supercritical Fluid Technology (1991)


Book Description

In this volume, we have collected a series of reviews that cover both experimental and theoretical work geared toward the more exact requirements of current SFE applications. While we have artificially divided the volume into experimental and theoretical sections, natural overlaps will be apparent. Many of the papers on experimental and theoretical sections, natural overlaps will be apparent. Many of the papers on experimental technique contain discussions on equation of state correlations. Indeed, a good deal of the experimental work is intimately tied to a mathematical description of fluid mixtures. The theoretical section presents reviews that cover the modern theory of critical phenomena, methods to correlate near critical experimental results and approaches to understanding the behavior of near critical fluids from microscopic theory. It is hoped that the scope of these reviews will provide the reader with the basis to further develop our understanding of the behavior of supercritical fluids.




Thermophysical Properties of Heavy Petroleum Fluids


Book Description

This book addresses conventional and new predictive methodologies for estimating thermophysical properties of heavy petroleum fluids. For the unidentifiable fractions forming the fluids, chemical structures are calculated so that property estimation methods for mixtures of identifiable components are now available for such fractions. Chemical and multiphase equilibriums are of utmost importance; hence, the most significant ones involving heavy petroleum fluids are determined and illustrated using advanced equations of state such as sPC-SAFT and EoS/GE. The included phase equilibriums are phase envelopes of reservoir fluids, asymmetric mixtures between light solvents and bitumen including the presence of water and asphaltenes, among others. Besides, heavy petroleum fluids are analyzed from the Newtonian and non-Newtonian viewpoints, exploring their complex rheological behavior. Finally, complemented by online an Excel program for the thermodynamic characterization of unidentifiable petroleum fractions, this book is a useful resource for engineers and researchers in the petroleum industry and is also of interest to students studying chemical and petroleum engineering.




CRC Handbook of Applied Thermodynamics


Book Description

This practical handbook features an overview of the importance of physical properties and thermodynamics; and the use of thermo-dynamics to predict the extent of reaction in proposed new chem-ical combinations. The use of special types of data and pre-diction methods to develop flowsheets for probing projects; and sources of critically evaluated data, dividing the published works into three categories depending on quality are given. Methods of doing one's own critical evaluation of literature, a list of known North American contract experimentalists with the types of data mea-sured by each, methods for measuring equilibrium data, and ther-modynamic concepts to carry out process opti-mization are also featured.




Supercritical Fluids


Book Description

Supercritical fluids which are neither gas nor liquid, but can be compressed gradually from low to high density, are gaining increasing importance as tunable solvents and reaction media in the chemical process industry. By adjusting the pressure, or more strictly the density, the properties of these fluids are customized and manipulated for the particular process at hand, be it a physical transformation, such as separation or solvation, or a chemical transformation, such as a reaction or reactive extraction. Supercritical fluids, however, differ from both gases and liquids in many respects. In order to properly understand and describe their properties, it is necessary to know the implications of their nearness to criticality, to be aware of the complex types of phase separation (including solid phases) that occur when the components of the fluid mixture are very different from each other, and to develop theories that can cope with the large differences in molecular size and shape of the supercritical solvent and the solutes that are present.