An Equivalence Between Two Algorithms for Quadratic Programming


Book Description

In this paper, we demonstrate that the Van de Panne-Whinston symmetric simplex method when applied to a certain implicit formulation of a quadratic program generates the same sequence of primal feasible vectors as does the Von Hohenbalken simplicial decomposition algorithmsm specialized to the same program. Such an equivalence of the two algorithms extends earlier results for a least-distance program due to Cottle-Djang. (Author).







Optimal Quadratic Programming Algorithms


Book Description

Quadratic programming (QP) is one advanced mathematical technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This book presents recently developed algorithms for solving large QP problems and focuses on algorithms which are, in a sense optimal, i.e., they can solve important classes of problems at a cost proportional to the number of unknowns. For each algorithm presented, the book details its classical predecessor, describes its drawbacks, introduces modifications that improve its performance, and demonstrates these improvements through numerical experiments. This self-contained monograph can serve as an introductory text on quadratic programming for graduate students and researchers. Additionally, since the solution of many nonlinear problems can be reduced to the solution of a sequence of QP problems, it can also be used as a convenient introduction to nonlinear programming.




Applied Mathematics and Parallel Computing


Book Description

The authors of this Festschrift prepared these papers to honour and express their friendship to Klaus Ritter on the occasion of his sixtieth birthday. Be cause of Ritter's many friends and his international reputation among math ematicians, finding contributors was easy. In fact, constraints on the size of the book required us to limit the number of papers. Klaus Ritter has done important work in a variety of areas, especially in var ious applications of linear and nonlinear optimization and also in connection with statistics and parallel computing. For the latter we have to mention Rit ter's development of transputer workstation hardware. The wide scope of his research is reflected by the breadth of the contributions in this Festschrift. After several years of scientific research in the U.S., Klaus Ritter was ap pointed as full professor at the University of Stuttgart. Since then, his name has become inextricably connected with the regularly scheduled conferences on optimization in Oberwolfach. In 1981 he became full professor of Applied Mathematics and Mathematical Statistics at the Technical University of Mu nich. In addition to his university teaching duties, he has made the activity of applying mathematical methods to problems of industry to be centrally important.




Algorithmic Equivalence in Quadratic Programming I: a Least Distance Programming Problem


Book Description

It is demonstrated that Wolfe's algorithm for finding the point of smallest Euclidean norm in a given convex polytope generates the same sequence of feasible points as does the van de Panne-Whinston symmetric algorithm applied to the associated quadratic programming problem. Furthermore, it is shown how the latter algorithm may be simplified for application to problems of this type. (Author).







Optimal Quadratic Programming Algorithms


Book Description

Quadratic programming (QP) is one advanced mathematical technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This book presents recently developed algorithms for solving large QP problems and focuses on algorithms which are, in a sense optimal, i.e., they can solve important classes of problems at a cost proportional to the number of unknowns. For each algorithm presented, the book details its classical predecessor, describes its drawbacks, introduces modifications that improve its performance, and demonstrates these improvements through numerical experiments. This self-contained monograph can serve as an introductory text on quadratic programming for graduate students and researchers. Additionally, since the solution of many nonlinear problems can be reduced to the solution of a sequence of QP problems, it can also be used as a convenient introduction to nonlinear programming.




Quadratic Programming with Computer Programs


Book Description

Quadratic programming is a mathematical technique that allows for the optimization of a quadratic function in several variables. QP is a subset of Operations Research and is the next higher lever of sophistication than Linear Programming. It is a key mathematical tool in Portfolio Optimization and structural plasticity. This is useful in Civil Engineering as well as Statistics.




Algorithms for Linear-Quadratic Optimization


Book Description

This textbook offers theoretical, algorithmic and computational guidelines for solving the most frequently encountered linear-quadratic optimization problems. It provides an overview of recent advances in control and systems theory, numerical line algebra, numerical optimization, scientific computations and software engineering.