Equivalences of Holomorphic Mappings in One and Several Complex Variables
Author : Adrian Jenkins
Publisher :
Page : 84 pages
File Size : 33,90 MB
Release : 2005
Category :
ISBN :
Author : Adrian Jenkins
Publisher :
Page : 84 pages
File Size : 33,90 MB
Release : 2005
Category :
ISBN :
Author : Jiri Lebl
Publisher : Lulu.com
Page : 142 pages
File Size : 25,30 MB
Release : 2016-05-05
Category : Science
ISBN : 1365095576
This book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.
Author : Sergey Pinchuk
Publisher : Springer Nature
Page : 217 pages
File Size : 49,90 MB
Release : 2023-10-16
Category : Mathematics
ISBN : 3031371496
This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been developed in connection with these questions, and the goal of this book is to introduce the reader to some of these approaches and to demonstrate how they can be used in the context of boundary properties of holomorphic maps. The authors present substantial results concerning holomorphic mappings in several complex variables with improved and often simplified proofs. Emphasis is placed on geometric methods, including the Kobayashi metric, the Scaling method, Segre varieties, and the Reflection principle. Geometry of Holomorphic Mappings will provide a valuable resource for PhD students in complex analysis and complex geometry; it will also be of interest to researchers in these areas as a reference.
Author : Henri Cartan
Publisher : Courier Corporation
Page : 242 pages
File Size : 16,82 MB
Release : 2013-04-22
Category : Mathematics
ISBN : 0486318672
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Author : John P. D'Angelo
Publisher : Routledge
Page : 287 pages
File Size : 43,64 MB
Release : 2019-07-16
Category : Mathematics
ISBN : 1351416723
Several Complex Variables and the Geometry of Real Hypersurfaces covers a wide range of information from basic facts about holomorphic functions of several complex variables through deep results such as subelliptic estimates for the ?-Neumann problem on pseudoconvex domains with a real analytic boundary. The book focuses on describing the geometry of a real hypersurface in a complex vector space by understanding its relationship with ambient complex analytic varieties. You will learn how to decide whether a real hypersurface contains complex varieties, how closely such varieties can contact the hypersurface, and why it's important. The book concludes with two sets of problems: routine problems and difficult problems (many of which are unsolved). Principal prerequisites for using this book include a thorough understanding of advanced calculus and standard knowledge of complex analysis in one variable. Several Complex Variables and the Geometry of Real Hypersurfaces will be a useful text for advanced graduate students and professionals working in complex analysis.
Author : Phillip A. Griffiths
Publisher : Princeton University Press
Page : 112 pages
File Size : 35,93 MB
Release : 2016-03-02
Category : Mathematics
ISBN : 140088148X
The present monograph grew out of the fifth set of Hermann Weyl Lectures, given by Professor Griffiths at the Institute for Advanced Study, Princeton, in fall 1974. In Chapter 1 the author discusses Emile Borel's proof and the classical Jensen theorem, order of growth of entire analytic sets, order functions for entire holomorphic mappings, classical indicators of orders of growth, and entire functions and varieties of finite order. Chapter 2 is devoted to the appearance of curvature, and Chapter 3 considers the defect relations. The author considers the lemma on the logarithmic derivative, R. Nevanlinna's proof of the defect relation, and refinements of the classical case.
Author : Robert Everist Greene
Publisher : American Mathematical Soc.
Page : 536 pages
File Size : 41,62 MB
Release : 2006
Category : Mathematics
ISBN : 9780821839621
Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
Author : Toshio Nishino
Publisher : American Mathematical Soc.
Page : 388 pages
File Size : 18,24 MB
Release : 2001
Category : Mathematics
ISBN : 9780821808160
'Kiyoshi Oka, at the beginning of his research, regarded the collection of problems which he encountered in the study of domains of holomorphy as large mountains which separate today and tomorrow. Thus, he believed that there could be no essential progress in analysis without climbing over these mountains ... this book is a worthwhile initial step for the reader in order to understand the mathematical world which was created by Kiyoshi Oka.' -- from the Preface. This book explains results in the theory of functions of several complex variables which were mostly established from the late nineteenth century through to the middle of the twentieth century. In the work, the author introduces the mathematical world created by his advisor, Kiyoshi Oka. In this volume, Oka's work is divided into two parts. The first is the study of analytic functions in univalent domains in ${\mathbf C}n$. Here Oka proved that three concepts are equivalent: domains of holomorphy, holomorphically convex domains, and pseudoconvex domains; and moreover that the Poincaré problem, the Cousin problems, and the Runge problem, when stated properly, can be solved in domains of holomorphy satisfying the appropriate conditions. The second part of Oka's work established a method for the study of analytic functions defined in a ramified domain over ${\mathbf C}n$ in which the branch points are considered as interior points of the domain. Here analytic functions in an analytic space are treated, which is a slight generalization of a ramified domain over ${\mathbf C}n$. In writing the book, the author's goal was to bring to readers a real understanding of Oka's original papers. This volume is an English translation of the original Japanese edition, published by the University of Tokyo Press (Japan). It would make a suitable course text for advanced graduate level introductions to several complex variables.
Author : Elias M. Stein
Publisher : Princeton University Press
Page : 398 pages
File Size : 28,95 MB
Release : 2010-04-22
Category : Mathematics
ISBN : 1400831156
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Author : H. Grauert
Publisher : Springer Science & Business Media
Page : 374 pages
File Size : 31,22 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 3662098733
The first survey of its kind, written by internationally known, outstanding experts who developed substantial parts of the field. The book contains an introduction written by Remmert, describing the history of the subject, and is very useful to graduate students and researchers in complex analysis, algebraic geometry and differential geometry.