Equivalents of the Axiom of Choice, II


Book Description

This monograph contains a selection of over 250 propositions which are equivalent to AC. The first part on set forms has sections on the well-ordering theorem, variants of AC, the law of the trichotomy, maximal principles, statements related to the axiom of foundation, forms from algebra, cardinal number theory, and a final section of forms from topology, analysis and logic. The second part deals with the axiom of choice for classes - well-ordering theorem, choice and maximal principles.




Axiom of Choice


Book Description

AC, the axiom of choice, because of its non-constructive character, is the most controversial mathematical axiom. It is shunned by some, used indiscriminately by others. This treatise shows paradigmatically that disasters happen without AC and they happen with AC. Illuminating examples are drawn from diverse areas of mathematics, particularly from general topology, but also from algebra, order theory, elementary analysis, measure theory, game theory, and graph theory.




The Axiom of Choice


Book Description

Comprehensive and self-contained text examines the axiom's relative strengths and consequences, including its consistency and independence, relation to permutation models, and examples and counterexamples of its use. 1973 edition.




Handbook of Analysis and Its Foundations


Book Description

Handbook of Analysis and Its Foundations is a self-contained and unified handbook on mathematical analysis and its foundations. Intended as a self-study guide for advanced undergraduates and beginning graduatestudents in mathematics and a reference for more advanced mathematicians, this highly readable book provides broader coverage than competing texts in the area. Handbook of Analysis and Its Foundations provides an introduction to a wide range of topics, including: algebra; topology; normed spaces; integration theory; topological vector spaces; and differential equations. The author effectively demonstrates the relationships between these topics and includes a few chapters on set theory and logic to explain the lack of examples for classical pathological objects whose existence proofs are not constructive. More complete than any other book on the subject, students will find this to be an invaluable handbook. Covers some hard-to-find results including: Bessagas and Meyers converses of the Contraction Fixed Point Theorem Redefinition of subnets by Aarnes and Andenaes Ghermans characterization of topological convergences Neumanns nonlinear Closed Graph Theorem van Maarens geometry-free version of Sperners Lemma Includes a few advanced topics in functional analysis Features all areas of the foundations of analysis except geometry Combines material usually found in many different sources, making this unified treatment more convenient for the user Has its own webpage: http://math.vanderbilt.edu/




Set Theory for the Working Mathematician


Book Description

Presents those methods of modern set theory most applicable to other areas of pure mathematics.




Set Theory and Its Philosophy


Book Description

A wonderful new book ... Potter has written the best philosophical introduction to set theory on the market - Timothy Bays, Notre Dame Philosophical Reviews.




Axiomatic Set Theory


Book Description

Geared toward upper-level undergraduates and graduate students, this treatment examines the basic paradoxes and history of set theory and advanced topics such as relations and functions, equipollence, more. 1960 edition.




Naive Set Theory


Book Description

Written by a prominent analyst Paul. R. Halmos, this book is the most famous, popular, and widely used textbook in the subject. The book is readable for its conciseness and clear explanation. This emended edition is with completely new typesetting and corrections. Asymmetry of the book cover is due to a formal display problem. Actual books are printed symmetrically. Please look at the paperback edition for the correct image. The free PDF file available on the publisher's website www.bowwowpress.org