Ergodic Theory and Fractal Geometry


Book Description

Fractal geometry represents a radical departure from classical geometry, which focuses on smooth objects that "straighten out" under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as "zooming in". This zooming-in process has its parallels in dynamics, and the varying "scenery" corresponds to the evolution of dynamical variables. The present monograph focuses on applications of one branch of dynamics--ergodic theory--to the geometry of fractals. Much attention is given to the all-important notion of fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics. A co-publication of the AMS and CBMS.




Ergodic Theory and Fractal Geometry


Book Description

fractal Geometry represents a radical departure from classical Geometry, which focuses on smooth objects that straighten out under magnification. Fractals, which take their name from the shape of fractured objects, can be characterized as retaining their lack of smoothness under magnification. The properties of fractals come to light under repeated magnification, which we refer to informally as zooming in. this zooming-in process has its parallels in dynamics, and the varying scenery corresponds to the evolution of dynamical variables. the present monograph focuses on applications of one branch of dynamics ergodic theory the Geometry of fractals. Much attention is given to the all-important notion of Fractal dimension, which is shown to be intimately related to the study of ergodic averages. It has been long known that dynamical systems serve as a rich source of Fractal examples. The primary goal in this monograph is to demonstrate how the minute structure of fractals is unfolded when seen in the light of related dynamics.




Ergodic Theory and Fractal Geometry


Book Description

"Notes based on a series of lectures delivered at Kent State University in 2011"--Preface.




Fractal Geometry and Analysis


Book Description

This ASI- which was also the 28th session of the Seminaire de mathematiques superieures of the Universite de Montreal - was devoted to Fractal Geometry and Analysis. The present volume is the fruit of the work of this Advanced Study Institute. We were fortunate to have with us Prof. Benoit Mandelbrot - the creator of numerous concepts in Fractal Geometry - who gave a series of lectures on multifractals, iteration of analytic functions, and various kinds of fractal stochastic processes. Different foundational contributions for Fractal Geometry like measure theory, dy namical systems, iteration theory, branching processes are recognized. The geometry of fractal sets and the analytical tools used to investigate them provide a unifying theme of this book. The main topics that are covered are then as follows. Dimension Theory. Many definitions of fractional dimension have been proposed, all of which coincide on "regular" objects, but often take different values for a given fractal set. There is ample discussion on piecewise estimates yielding actual values for the most common dimensions (Hausdorff, box-counting and packing dimensions). The dimension theory is mainly discussed by Mendes-France, Bedford, Falconer, Tricot and Rata. Construction of fractal sets. Scale in variance is a fundamental property of fractal sets.




Fractal Geometry and Stochastics


Book Description

Fractal geometry is a new and promising field for researchers from different disciplines such as mathematics, physics, chemistry, biology and medicine. It is used to model complicated natural and technical phenomena. The most convincing models contain an element of randomness so that the combination of fractal geometry and stochastics arises in between these two fields. It contains contributions by outstanding mathematicians and is meant to highlight the principal directions of research in the area. The contributors were the main speakers attending the conference "Fractal Geometry and Stochastics" held at Finsterbergen, Germany, in June 1994. This was the first international conference ever to be held on the topic. The book is addressed to mathematicians and other scientists who are interested in the mathematical theory concerning: • Fractal sets and measures • Iterated function systems • Random fractals • Fractals and dynamical systems, and • Harmonic analysis on fractals. The reader will be introduced to the most recent results in these subjects. Researchers and graduate students alike will benefit from the clear expositions.




Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot


Book Description

This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.




Conformal Fractals


Book Description

A one-stop introduction to the methods of ergodic theory applied to holomorphic iteration that is ideal for graduate courses.




Lectures On Fractal Geometry


Book Description

This book is based on a series of lectures at the Mathematics Department of the University of Jena, developed in the period from 1995 up to 2015. It is completed by additional material and extensions of some basic results from the literature to more general metric spaces.This book provides a clear introduction to classical fields of fractal geometry, which provide some background for modern topics of research and applications. Some basic knowledge on general measure theory and on topological notions in metric spaces is presumed.




Geometry and Analysis of Fractals


Book Description

This volume collects thirteen expository or survey articles on topics including Fractal Geometry, Analysis of Fractals, Multifractal Analysis, Ergodic Theory and Dynamical Systems, Probability and Stochastic Analysis, written by the leading experts in their respective fields. The articles are based on papers presented at the International Conference on Advances on Fractals and Related Topics, held on December 10-14, 2012 at the Chinese University of Hong Kong. The volume offers insights into a number of exciting, cutting-edge developments in the area of fractals, which has close ties to and applications in other areas such as analysis, geometry, number theory, probability and mathematical physics.




Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot


Book Description

This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.