Ergodic Theory – Finite and Infinite, Thermodynamic Formalism, Symbolic Dynamics and Distance Expanding Maps


Book Description

The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.




Finer Thermodynamic Formalism – Distance Expanding Maps and Countable State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and Fractal Geometry


Book Description

The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.




Deformation Theory of Discontinuous Groups


Book Description

This book contains the latest developments of the theory of discontinuous groups acting on homogenous spaces, from basic concepts to a comprehensive exposition. It develops the newest approaches and methods in the deformation theory of topological modules and unitary representations and focuses on the geometry of discontinuous groups of solvable Lie groups and their compact extensions. It also presents proofs of recent results, computes fundamental examples, and serves as an introduction and reference for students and experienced researchers in Lie theory, discontinuous groups, and deformation (and moduli) spaces.




The Canonical Operator in Many-Particle Problems and Quantum Field Theory


Book Description

In this monograph we study the problem of construction of asymptotic solutions of equations for functions whose number of arguments tends to infinity as the small parameter tends to zero. Such equations arise in statistical physics and in quantum theory of a large number of fi elds. We consider the problem of renormalization of quantum field theory in the Hamiltonian formalism, which encounters additional difficulties related to the Stückelberg divergences and the Haag theorem. Asymptotic methods for solving pseudodifferential equations with small parameter multiplying the derivatives, as well as the asymptotic methods developed in the present monograph for solving problems in statistical physics and quantum field theory, can be considered from a unified viewpoint if one introduces the notion of abstract canonical operator. The book can be of interest for researchers – specialists in asymptotic methods, statistical physics, and quantum fi eld theory as well as for graduate and undergraduate students of these specialities.




The d-bar Neumann Problem and Schrödinger Operators


Book Description

This book's subject lies in the nexus of partial differential equations, operator theory, and complex analysis. The spectral analysis of the complex Laplacian and the compactness of the d-bar-Neumann operator are primary topics.The revised 2nd edition explores updates to Schrödinger operators with magnetic fields and connections to the Segal Bargmann space (Fock space), to quantum mechanics, and the uncertainty principle.




Hardy Inequalities and Applications


Book Description

This book derives new Hardy inequalities with double singular weights - at an interior point and on the boundary of the domain. We focus on the optimality of Hardy constant and on its attainability. Applications include: results about existence\nonexistence and controllability for parabolic equations with double singular potentials; estimates from below of the fi rst eigenvalue of p-Laplacian with Dirichlet boundary conditions.







Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry


Book Description

The theory of random dynamical systems originated from stochastic differential equations. It is intended to provide a framework and techniques to describe and analyze the evolution of dynamical systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen’s formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We show that in the essentially random case the Hausdorff measure vanishes, which refutes a conjecture by Bogenschutz and Ochs. Lastly, we present applications of our results to various specific conformal random systems and positively answer a question posed by Bruck and Buger concerning the Hausdorff dimension of quadratic random Julia sets.




Mathematics of Complexity and Dynamical Systems


Book Description

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.




Meromorphic Dynamics


Book Description

A comprehensive and detailed presentation of finite and infinite ergodic theory, fractal measures, and thermodynamic formalism.