Ernst Zermelo - Collected Works/Gesammelte Werke


Book Description

Ernst Zermelo (1871-1953) is regarded as the founder of axiomatic set theory and best-known for the first formulation of the axiom of choice. However, his papers include also pioneering work in applied mathematics and mathematical physics. This edition of his collected papers will consist of two volumes. Besides providing a biography, the present Volume I covers set theory, the foundations of mathematics, and pure mathematics and is supplemented by selected items from his Nachlass and part of his translations of Homer's Odyssey. Volume II will contain his work in the calculus of variations, applied mathematics, and physics. The papers are each presented in their original language together with an English translation, the versions facing each other on opposite pages. Each paper or coherent group of papers is preceded by an introductory note provided by an acknowledged expert in the field which comments on the historical background, motivations, accomplishments, and influence.




Ernst Zermelo - Collected Works/Gesammelte Werke II


Book Description

Ernst Zermelo (1871-1953) is regarded as the founder of axiomatic set theory and is best-known for the first formulation of the axiom of choice. However, his papers also include pioneering work in applied mathematics and mathematical physics. This edition of his collected papers consists of two volumes. The present Volume II covers Ernst Zermelo’s work on the calculus of variations, applied mathematics, and physics. The papers are each presented in their original language together with an English translation, the versions facing each other on opposite pages. Each paper or coherent group of papers is preceded by an introductory note provided by an acknowledged expert in the field who comments on the historical background, motivation, accomplishments, and influence.




Ernst Zermelo - Collected Works/Gesammelte Werke


Book Description

Ernst Zermelo (1871-1953) is regarded as the founder of axiomatic set theory and best-known for the first formulation of the axiom of choice. However, his papers include also pioneering work in applied mathematics and mathematical physics. This edition of his collected papers will consist of two volumes. Besides providing a biography, the present Volume I covers set theory, the foundations of mathematics, and pure mathematics and is supplemented by selected items from his Nachlass and part of his translations of Homer's Odyssey. Volume II will contain his work in the calculus of variations, applied mathematics, and physics. The papers are each presented in their original language together with an English translation, the versions facing each other on opposite pages. Each paper or coherent group of papers is preceded by an introductory note provided by an acknowledged expert in the field which comments on the historical background, motivations, accomplishments, and influence.




Foundations of Mathematics


Book Description

This volume contains the proceedings of the Logic at Harvard conference in honor of W. Hugh Woodin's 60th birthday, held March 27–29, 2015, at Harvard University. It presents a collection of papers related to the work of Woodin, who has been one of the leading figures in set theory since the early 1980s. The topics cover many of the areas central to Woodin's work, including large cardinals, determinacy, descriptive set theory and the continuum problem, as well as connections between set theory and Banach spaces, recursion theory, and philosophy, each reflecting a period of Woodin's career. Other topics covered are forcing axioms, inner model theory, the partition calculus, and the theory of ultrafilters. This volume should make a suitable introduction to Woodin's work and the concerns which motivate it. The papers should be of interest to graduate students and researchers in both mathematics and philosophy of mathematics, particularly in set theory, foundations and related areas.




Wittgenstein’s Annotations to Hardy’s Course of Pure Mathematics


Book Description

This monograph examines the private annotations that Ludwig Wittgenstein made to his copy of G.H. Hardy’s classic textbook, A Course of Pure Mathematics. Complete with actual images of the annotations, it gives readers a more complete picture of Wittgenstein’s remarks on irrational numbers, which have only been published in an excerpted form and, as a result, have often been unjustly criticized. The authors first establish the context behind the annotations and discuss the historical role of Hardy’s textbook. They then go on to outline Wittgenstein’s non-extensionalist point of view on real numbers, assessing his manuscripts and published remarks and discussing attitudes in play in the philosophy of mathematics since Dedekind. Next, coverage focuses on the annotations themselves. The discussion encompasses irrational numbers, the law of excluded middle in mathematics and the notion of an “improper picture," the continuum of real numbers, and Wittgenstein’s attitude toward functions and limits.




Combinatorial Set Theory


Book Description

This book provides a self-contained introduction to modern set theory and also opens up some more advanced areas of current research in this field. The first part offers an overview of classical set theory wherein the focus lies on the axiom of choice and Ramsey theory. In the second part, the sophisticated technique of forcing, originally developed by Paul Cohen, is explained in great detail. With this technique, one can show that certain statements, like the continuum hypothesis, are neither provable nor disprovable from the axioms of set theory. In the last part, some topics of classical set theory are revisited and further developed in the light of forcing. The notes at the end of each chapter put the results in a historical context, and the numerous related results and the extensive list of references lead the reader to the frontier of research. This book will appeal to all mathematicians interested in the foundations of mathematics, but will be of particular use to graduates in this field.




Research in History and Philosophy of Mathematics


Book Description

This volume contains thirteen papers that were presented at the 2017 Annual Meeting of the Canadian Society for History and Philosophy of Mathematics/Société canadienne d’histoire et de philosophie des mathématiques, which was held at Ryerson University in Toronto. It showcases rigorously reviewed modern scholarship on an interesting variety of topics in the history and philosophy of mathematics from Ancient Greece to the twentieth century. A series of chapters all set in the eighteenth century consider topics such as John Marsh’s techniques for the computation of decimal fractions, Euler’s efforts to compute the surface area of scalene cones, a little-known work by John Playfair on the practical aspects of mathematics, and Monge’s use of descriptive geometry. After a brief stop in the nineteenth century to consider the culture of research mathematics in 1860s Prussia, the book moves into the twentieth century with an examination of the historical context within which the Axiom of Choice was developed and a paper discussing Anatoly Vlasov’s adaptation of the Boltzmann equation to ionized gases. The remaining chapters deal with the philosophy of twentieth-century mathematics through topics such as an historically informed discussion of finitism and its limits; a reexamination of Mary Leng’s defenses of mathematical fictionalism through an alternative, anti-realist approach to mathematics; and a look at the reasons that mathematicians select specific problems to pursue. Written by leading scholars in the field, these papers are accessible to not only mathematicians and students of the history and philosophy of mathematics, but also anyone with a general interest in mathematics.




Max Dehn


Book Description

Max Dehn (1878?1952) is known to mathematicians today for his seminal contributions to geometry and topology?Dehn surgery, Dehn twists, the Dehn invariant, etc. He is also remembered as the first mathematician to solve one of Hilbert?s famous problems. However, Dehn's influence as a scholar and teacher extended far beyond his mathematics. Dehn also lived a remarkable life, described in this book in three phases. The first phase focuses on his early career as one of David Hilbert?s most gifted students. The second, after World War I, treats his time in Frankfurt where he led an intimate community of mathematicians in explorations of historical texts. The final phase, after 1938, concerns his flight from Nazi Germany to Scandinavia and eventually to the United States where, after various teaching experiences, the Dehns settled at iconic Black Mountain College. This book is a collection of essays written by mathematicians and historians of art and science. It treats Dehn?s mathematics and its influence, his journeys, and his remarkable engagement in history and the arts. A great deal of the information found in this book has never before been published.




Atoms, Mechanics, and Probability


Book Description

One of the pillars of modern science, statistical mechanics, owes much to one man, the Austrian physicist Ludwig Boltzmann (1844-1906). As a result of his unusual working and writing styles, his enormous contribution remains little read and poorly understood. The purpose of this book is to make the Boltzmann corpus more accessible to physicists, philosophers, and historians, and so give it new life. The means are introductory biographical and historical materials, detailed and lucid summaries of every relevant publication, and a final chapter of critical synthesis. Special attention is given to Boltzmann's theoretical tool-box and to his patient construction of lofty formal systems even before their full conceptual import could be known. This constructive tendency largely accounts for his lengthy style, for the abundance of new constructions, for the relative vagueness of their object--and for the puzzlement of commentators. This book will help the reader cross the stylistic barrier and see how ingeniously Boltzmann combined atoms, mechanics, and probability to invent new bridges between the micro- and macro-worlds.




The Real Numbers


Book Description

While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory—uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been content to "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.