Erosion and Sedimentation


Book Description

The second edition of this acclaimed, accessible textbook brings the subject of sedimentation and erosion up-to-date, providing an excellent primer on both fundamental concepts of sediment-transport theory and methods for practical applications. The structure of the first edition is essentially unchanged, but all the chapters have been updated, with several chapters reworked and expanded significantly. Examples of the new additions include the concept of added mass, the Modified Einstein Procedure, sediment transport by size fractions, sediment transport of sediment mixtures, and new solutions to the Einstein Integrals. Many new examples and exercises have been added. Erosion and Sedimentation is an essential textbook on the topic for students in civil and environmental engineering and the geosciences, and also as a handbook for researchers and professionals in engineering, the geosciences and the water sciences.







Construction Site Erosion and Sediment Controls


Book Description

Contains critical design tools for practical implementation of techniques to control and abate run-off and sediment from construction sites.




Modeling and Practice of Erosion and Sediment Transport under Change


Book Description

Climate and anthropogenic changes impact the conditions of erosion and sediment transport in rivers. Rainfall variability and, in many places, the increase of rainfall intensity have a direct impact on rainfall erosivity. Increasing changes in demography have led to the acceleration of land cover changes in natural areas, as well as in cultivated areas, and, sometimes, in degraded areas and desertified landscapes. These anthropogenized landscapes are more sensitive to erosion. On the other hand, the increase in the number of dams in watersheds traps a great portion of sediment fluxes, which do not reach the sea in the same amount, nor at the same quality, with consequences on coastal geomorphodynamics. This book is dedicated to studies on sediment fluxes from continental areas to coastal areas, as well as observation, modeling, and impact analysis at different scales from watershed slopes to the outputs of large river basins. This book is concentrated on a number of keywords: “erosion” and “sediment transport”, “model” and “practice”, and “change”. The keywords are briefly discussed with respect to the relevant literature. The contributions in this book address observations and models based on laboratory and field data, allowing researchers to make use of such resources in practice under changing conditions.







Human Impact on Erosion and Sedimentation


Book Description




Soil Erosion and Sediment Redistribution in River Catchments


Book Description

There can be little doubt that issues relating to soils and sediments are moving up the political agenda, and a realization that we need to collectively manage and protect both soil and water resources. In order to manage this delicate interface, attention is being increasingly directed towards holistic land-river management, demanding a greater appreciation of the interaction between soils and sediments. This book reviews the major achievements recently made in soil erosion and sediment redistribution research and management, and identifies future requirements.




River Mechanics


Book Description

Completely updated and with three new chapters, this analysis of river dynamics is invaluable for advanced students, researchers and practitioners.




Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides


Book Description

This publication deals with soil erosion and sedimentation. Soil erosion and associated sediment deposition are natural landscape-forming processes that can be greatly accelerated by human intervention through deforestation, overgrazing, and non-sustainable farming practices. Soil erosion and sedimentation may not only cause on-site degradation of the natural resource base, but also off-site problems— downstream sediment deposition in fields, floodplains and water bodies, water pollution, eutrophication and reservoir siltation, etc. —with serious environmental and economic impairment. There is an urgent need for accurate information to quantify the problem and to underpin the selection of effective soil-conservation technologies and sedimentation-remediation strategies, including assessment of environmental and economic impacts. Existing classical techniques to document soil erosion are capable of meeting some of these needs, but they all possess important limitations. The quest for alternative techniques for assessing soil erosion, to complement existing methods, directed attention to the use of environmental radionuclides, in particular fallout as tracers to quantify rates and establish patterns of soil redistribution within the landscape. The concept of a project on the use of environmental radionuclides to quantify soil redistribution was first formulated at an Advisory Group Meeting convened in Vienna, April 1993, by the International Atomic Energy Agency (IAEA).