ESL Design and Verification


Book Description

Visit the authors' companion site! http://www.electronicsystemlevel.com/ - Includes interactive forum with the authors!Electronic System Level (ESL) design has mainstreamed – it is now an established approach at most of the world's leading system-on-chip (SoC) design companies and is being used increasingly in system design. From its genesis as an algorithm modeling methodology with 'no links to implementation', ESL is evolving into a set of complementary methodologies that enable embedded system design, verification and debug through to the hardware and software implementation of custom SoC, system-on-FPGA, system-on-board, and entire multi-board systems. This book arises from experience the authors have gained from years of work as industry practitioners in the Electronic System Level design area; they have seen "SLD" or "ESL" go through many stages and false starts, and have observed that the shift in design methodologies to ESL is finally occurring. This is partly because of ESL technologies themselves are stabilizing on a useful set of languages being standardized (SystemC is the most notable), and use models are being identified that are beginning to get real adoption. ESL DESIGN & VERIFICATION offers a true prescriptive guide to ESL that reviews its past and outlines the best practices of today.Table of ContentsCHAPTER 1: WHAT IS ESL? CHAPTER 2: TAXONOMY AND DEFINITIONS FOR THE ELECTRONIC SYSTEM LEVEL CHAPTER 3: EVOLUTION OF ESL DEVELOPMENT CHAPTER 4: WHAT ARE THE ENABLERS OF ESL? CHAPTER 5: ESL FLOW CHAPTER 6: SPECIFICATIONS AND MODELING CHAPTER 7: PRE-PARTITIONING ANALYSIS CHAPTER 8: PARTITIONING CHAPTER 9: POST-PARTITIONING ANALYSIS AND DEBUG CHAPTER 10: POST-PARTITIONING VERIFICATION CHAPTER 11: HARDWARE IMPLEMENTATION CHAPTER 12: SOFTWARE IMPLEMENTATION CHAPTER 13: USE OF ESL FOR IMPLEMENTATION VERIFICATION CHAPTER 14: RESEARCH, EMERGING AND FUTURE PROSPECTS APPENDIX: LIST OF ACRONYMS* Provides broad, comprehensive coverage not available in any other such book * Massive global appeal with an internationally recognised author team * Crammed full of state of the art content from notable industry experts




ESL Models and their Application


Book Description

This book arises from experience the authors have gained from years of work as industry practitioners in the field of Electronic System Level design (ESL). At the heart of all things related to Electronic Design Automation (EDA), the core issue is one of models: what are the models used for, what should the models contain, and how should they be written and distributed. Issues such as interoperability and tool transportability become central factors that may decide which ones are successful and those that cannot get sufficient traction in the industry to survive. Through a set of real examples taken from recent industry experience, this book will distill the state of the art in terms of System-Level Design models and provide practical guidance to readers that can be put into use. This book is an invaluable tool that will aid readers in their own designs, reduce risk in development projects, expand the scope of design projects, and improve developmental processes and project planning.




ASIC/SoC Functional Design Verification


Book Description

This book describes in detail all required technologies and methodologies needed to create a comprehensive, functional design verification strategy and environment to tackle the toughest job of guaranteeing first-pass working silicon. The author first outlines all of the verification sub-fields at a high level, with just enough depth to allow an engineer to grasp the field before delving into its detail. He then describes in detail industry standard technologies such as UVM (Universal Verification Methodology), SVA (SystemVerilog Assertions), SFC (SystemVerilog Functional Coverage), CDV (Coverage Driven Verification), Low Power Verification (Unified Power Format UPF), AMS (Analog Mixed Signal) verification, Virtual Platform TLM2.0/ESL (Electronic System Level) methodology, Static Formal Verification, Logic Equivalency Check (LEC), Hardware Acceleration, Hardware Emulation, Hardware/Software Co-verification, Power Performance Area (PPA) analysis on a virtual platform, Reuse Methodology from Algorithm/ESL to RTL, and other overall methodologies.




TLM-driven Design and Verification Methodology


Book Description

This book describes a comprehensive SystemC TLM-driven IP design and verification solution'including methodology guidelines, high-level synthesis, and TLM-aware verification basedon Cadence products'that will help designers transition to a TLM-driven design andverification flow.




Electronic Design Automation


Book Description

This book provides broad and comprehensive coverage of the entire EDA flow. EDA/VLSI practitioners and researchers in need of fluency in an "adjacent" field will find this an invaluable reference to the basic EDA concepts, principles, data structures, algorithms, and architectures for the design, verification, and test of VLSI circuits. Anyone who needs to learn the concepts, principles, data structures, algorithms, and architectures of the EDA flow will benefit from this book. - Covers complete spectrum of the EDA flow, from ESL design modeling to logic/test synthesis, verification, physical design, and test - helps EDA newcomers to get "up-and-running" quickly - Includes comprehensive coverage of EDA concepts, principles, data structures, algorithms, and architectures - helps all readers improve their VLSI design competence - Contains latest advancements not yet available in other books, including Test compression, ESL design modeling, large-scale floorplanning, placement, routing, synthesis of clock and power/ground networks - helps readers to design/develop testable chips or products - Includes industry best-practices wherever appropriate in most chapters - helps readers avoid costly mistakes




System-Level Validation


Book Description

This book covers state-of-the art techniques for high-level modeling and validation of complex hardware/software systems, including those with multicore architectures. Readers will learn to avoid time-consuming and error-prone validation from the comprehensive coverage of system-level validation, including high-level modeling of designs and faults, automated generation of directed tests, and efficient validation methodology using directed tests and assertions. The methodologies described in this book will help designers to improve the quality of their validation, performing as much validation as possible in the early stages of the design, while reducing the overall validation effort and cost.




Constraint-Based Verification


Book Description

Covers the methodology and state-of-the-art techniques of constrained verification, which is new and popular. It relates constrained verification with the also-hot technology called assertion-based design. Discussed and clarifies language issues, critical to both the above, which will help the implementation of these languages.




High-Level Synthesis


Book Description

This book presents an excellent collection of contributions addressing different aspects of high-level synthesis from both industry and academia. It includes an overview of available EDA tool solutions and their applicability to design problems.




Embedded Systems and Software Validation


Book Description

Modern embedded systems require high performance, low cost and low power consumption. Such systems typically consist of a heterogeneous collection of processors, specialized memory subsystems, and partially programmable or fixed-function components. This heterogeneity, coupled with issues such as hardware/software partitioning, mapping, scheduling, etc., leads to a large number of design possibilities, making performance debugging and validation of such systems a difficult problem. Embedded systems are used to control safety critical applications such as flight control, automotive electronics and healthcare monitoring. Clearly, developing reliable software/systems for such applications is of utmost importance. This book describes a host of debugging and verification methods which can help to achieve this goal. - Covers the major abstraction levels of embedded systems design, starting from software analysis and micro-architectural modeling, to modeling of resource sharing and communication at the system level - Integrates formal techniques of validation for hardware/software with debugging and validation of embedded system design flows - Includes practical case studies to answer the questions: does a design meet its requirements, if not, then which parts of the system are responsible for the violation, and once they are identified, then how should the design be suitably modified?




Debugging at the Electronic System Level


Book Description

Debugging becomes more and more the bottleneck to chip design productivity, especially while developing modern complex integrated circuits and systems at the Electronic System Level (ESL). Today, debugging is still an unsystematic and lengthy process. Here, a simple reporting of a failure is not enough, anymore. Rather, it becomes more and more important not only to find many errors early during development but also to provide efficient methods for their isolation. In Debugging at the Electronic System Level the state-of-the-art of modeling and verification of ESL designs is reviewed. There, a particular focus is taken onto SystemC. Then, a reasoning hierarchy is introduced. The hierarchy combines well-known debugging techniques with whole new techniques to improve the verification efficiency at ESL. The proposed systematic debugging approach is supported amongst others by static code analysis, debug patterns, dynamic program slicing, design visualization, property generation, and automatic failure isolation. All techniques were empirically evaluated using real-world industrial designs. Summarized, the introduced approach enables a systematic search for errors in ESL designs. Here, the debugging techniques improve and accelerate error detection, observation, and isolation as well as design understanding.