Essays in Nonlinear Time Series Econometrics


Book Description

This edited collection concerns nonlinear economic relations that involve time. It is divided into four broad themes that all reflect the work and methodology of Professor Timo Teräsvirta, one of the leading scholars in the field of nonlinear time series econometrics. The themes are: Testing for linearity and functional form, specification testing and estimation of nonlinear time series models in the form of smooth transition models, model selection and econometric methodology, and finally applications within the area of financial econometrics. All these research fields include contributions that represent state of the art in econometrics such as testing for neglected nonlinearity in neural network models, time-varying GARCH and smooth transition models, STAR models and common factors in volatility modeling, semi-automatic general to specific model selection for nonlinear dynamic models, high-dimensional data analysis for parametric and semi-parametric regression models with dependent data, commodity price modeling, financial analysts earnings forecasts based on asymmetric loss function, local Gaussian correlation and dependence for asymmetric return dependence, and the use of bootstrap aggregation to improve forecast accuracy. Each chapter represents original scholarly work, and reflects the intellectual impact that Timo Teräsvirta has had and will continue to have, on the profession.










Elements of Nonlinear Time Series Analysis and Forecasting


Book Description

This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.




Nonlinear Time Series Analysis with R


Book Description

Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians — with limited knowledge of nonlinear dynamics — to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic (please see www.marco.bittelli.com). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework — condensed from sound empirical practices recommended in the literature — that details a step-by-step procedure for applying NLTS in real-world data diagnostics.




Nonlinear Time Series Analysis in the Geosciences


Book Description

The enormous progress over the last decades in our understanding of the mechanisms behind the complex system “Earth” is to a large extent based on the availability of enlarged data sets and sophisticated methods for their analysis. Univariate as well as multivariate time series are a particular class of such data which are of special importance for studying the dynamical p- cesses in complex systems. Time series analysis theory and applications in geo- and astrophysics have always been mutually stimulating, starting with classical (linear) problems like the proper estimation of power spectra, which hasbeenputforwardbyUdnyYule(studyingthefeaturesofsunspotactivity) and, later, by John Tukey. In the second half of the 20th century, more and more evidence has been accumulated that most processes in nature are intrinsically non-linear and thus cannot be su?ciently studied by linear statistical methods. With mat- matical developments in the ?elds of dynamic system’s theory, exempli?ed by Edward Lorenz’s pioneering work, and fractal theory, starting with the early fractal concepts inferred by Harold Edwin Hurst from the analysis of geoph- ical time series,nonlinear methods became available for time seriesanalysis as well. Over the last decades, these methods have attracted an increasing int- est in various branches of the earth sciences. The world’s leading associations of geoscientists, the American Geophysical Union (AGU) and the European Geosciences Union (EGU) have reacted to these trends with the formation of special nonlinear focus groups and topical sections, which are actively present at the corresponding annual assemblies.




Nonlinear Time Series Analysis of Business Cycles


Book Description

This volume of Contributions to Economic Analysis addresses a number of important questions in the field of business cycles including: How should business cycles be dated and measured? What is the response of output and employment to oil-price and monetary shocks? And, is the business cycle asymmetric, and does it matter?




Nonlinear Time Series Analysis of Economic and Financial Data


Book Description

Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.




Political Complexity


Book Description

DIVDemonstrates how non-linear models help us understand political phenomena /div




Essays in Honor of Peter C. B. Phillips


Book Description

This volume honors Professor Peter C.B. Phillips' many contributions to the field of econometrics. The topics include non-stationary time series, panel models, financial econometrics, predictive tests, IV estimation and inference, difference-in-difference regressions, stochastic dominance techniques, and information matrix testing.