Essential Dynamics and Relativity


Book Description

Essential Dynamics & Relativity provides students with an introduction to the core aspects of dynamics and special relativity. The author reiterates important ideas and terms throughout and covers concepts that are often missing from other textbooks at this level. He also places each topic within the wider constructs of the theory, without jumping from topic to topic to illustrate a point. The first section of the book focuses on dynamics, discussing the basic aspects of single particle motion and analyzing the motion of multi-particle systems. The book also explains the dynamical behavior of both composite bodies (rigid bodies) and objects in non-inertial frames of reference (rotating reference frames). The second section concentrates on relativity. The author describes the ideas leading to the inception of special relativity. He also formulates fundamental aspects, such as time dilation, length contraction, Lorentz transformations, and the visual aids of Minkowski diagrams, necessary to develop more sophisticated ideas. He then develops the concepts within the context of relativistic mechanics. With many examples throughout and exercises at the end of each chapter, this text makes the often daunting and confusing ideas of dynamics and special relativity accessible to undergraduate students studying the subjects for the first time.




Essential Dynamics and Relativity


Book Description

Essential Dynamics & Relativity provides students with an introduction to the core aspects of dynamics and special relativity. The author reiterates important ideas and terms throughout and covers concepts that are often missing from other textbooks at this level. He also places each topic within the wider constructs of the theory, without jump




Dynamics and Relativity


Book Description

Dynamics and Relativity provides undergraduates in physics with an unusually accessible introduction to special relativity by emphasizing the connections between relativity and classical mechanics. The book begins by developing classical mechanics in a form that the author calls "Galilean Relativity," which emphasizes frames of reference. The author shows how a problem formulated in one frame of reference can then solved in another where the problem takes a simpler form. After applying this strategy to a number of classical problems, the author discusses the limitations of Galilean Relativity, particularly for handling Maxwell's equations, and then proceeds to develop Special Relativity while drawing extensively on the groundwork from the previous chapters. The book stresses conservation laws throughout and includes a final chapter that briefly outlines General Relativity.




Mass and Motion in General Relativity


Book Description

From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.




The Monte Carlo Methods


Book Description

In applied mathematics, the name Monte Carlo is given to the method of solving problems by means of experiments with random numbers. This name, after the casino at Monaco, was first applied around 1944 to the method of solving deterministic problems by reformulating them in terms of a problem with random elements, which could then be solved by large-scale sampling. But, by extension, the term has come to mean any simulation that uses random numbers. Monte Carlo methods have become among the most fundamental techniques of simulation in modern science. This book is an illustration of the use of Monte Carlo methods applied to solve specific problems in mathematics, engineering, physics, statistics, and science in general.




Simultaneous Systems of Differential Equations and Multi-Dimensional Vibrations


Book Description

Simultaneous Differential Equations and Multi-Dimensional Vibrations is the fourth book within Ordinary Differential Equations with Applications to Trajectories and Vibrations, Six-volume Set. As a set, they are the fourth volume in the series Mathematics and Physics Applied to Science and Technology. This fourth book consists of two chapters (chapters 7 and 8 of the set). The first chapter concerns simultaneous systems of ordinary differential equations and focuses mostly on the cases that have a matrix of characteristic polynomials, namely linear systems with constant or homogeneous power coefficients. The method of the matrix of characteristic polynomials also applies to simultaneous systems of linear finite difference equations with constant coefficients. The second chapter considers linear multi-dimensional oscillators with any number of degrees of freedom including damping, forcing, and multiple resonance. The discrete oscillators may be extended from a finite number of degrees-of-freedom to infinite chains. The continuous oscillators correspond to waves in homogeneous or inhomogeneous media, including elastic, acoustic, electromagnetic, and water surface waves. The combination of propagation and dissipation leads to the equations of mathematical physics. Presents simultaneous systems of ordinary differential equations and their elimination for a single ordinary differential equation Includes cases with a matrix of characteristic polynomials, including simultaneous systems of linear differential and finite difference equations with constant coefficients Covers multi-dimensional oscillators with damping and forcing, including modal decomposition, natural frequencies and coordinates, and multiple resonance Discusses waves in inhomogeneous media, such as elastic, electromagnetic, acoustic, and water waves Includes solutions of partial differential equations of mathematical physics by separation of variables leading to ordinary differential equations




Exploring the Contributions of Women in the History of Philosophy, Science, and Literature, Throughout Time


Book Description

This book explores contributions by some of the most influential women in the history of philosophy, science, and literature. Ranging from Sappho and Sophie Germain to Stebbing and Evelyn Fox Keller, this work ultimately demonstrates the impact these non-canonical, sometimes unknown or hidden, sources had, or may have had, on the recognized male leaders in their fields, from Aristotle to Pascal, Kant, Whitehead, and Russell. Chapters reflect philosophical pluralism, both analytic and continental themes, and cover figures reaching across the entire history of ideas in the West, from pre-historic times to the twentieth century. Anyone interested in coming to know or in preparing to teach women in the history of philosophy, science, and literature will appreciate this collection and its myriad insights into the still unrecognized voices of non-canonical sources across these disciplines.




Elements of Numerical Relativity and Relativistic Hydrodynamics


Book Description

Many large-scale projects for detecting gravitational radiation are currently being developed, all with the aim of opening a new window onto the observable Universe. As a result, numerical relativity has recently become a major field of research, and Elements of Numerical Relativity and Relativistic Hydrodynamics is a valuable primer for both graduate students and non-specialist researchers wishing to enter the field. A revised and significantly enlarged edition of LNP 673 Elements of Numerical Relativity, this book starts with the most basic insights and aspects of numerical relativity before it develops coherent guidelines for the reliable and convenient selection of each of the following key aspects: evolution formalism; gauge, initial, and boundary conditions; and various numerical algorithms. And in addition to many revisions, it includes new, convenient damping terms for numerical implementations, a presentation of the recently-developed harmonic formalism, and an extensive, new chapter on matter space-times, containing a thorough introduction to relativistic hydrodynamics. While proper reference is given to advanced applications requiring large computational resources, most tests and applications in this book can be performed on a standard PC.




Relativity, Gravitation and Cosmology


Book Description

An introduction to Einstein's general theory of relativity, this work is structured so that interesting applications, such as gravitational lensing, black holes and cosmology, can be presented without the readers having to first learn the difficult mathematics of tensor calculus.




Conceptual Evolution of Newtonian and Relativistic Mechanics


Book Description

This book provides an introduction to Newtonian and relativistic mechanics. Unlike other books on the topic, which generally take a 'top-down' approach, it follows a novel system to show how the concepts of the 'science of motion' evolved through a veritable jungle of intermediate ideas and concepts. Starting with Aristotelian philosophy, the text gradually unravels how the human mind slowly progressed towards the fundamental ideas of inertia physics. The concepts that now appear so obvious to even a high school student took great intellectuals more than a millennium to clarify. The book explores the evolution of these concepts through the history of science. After a comprehensive overview of the discovery of dynamics, it explores fundamental issues of the properties of space and time and their relation with the laws of motion. It also explores the concepts of spatio-temporal locality and fields, and offers a philosophical discussion of relative motion versus absolute motion, as well as the concept of an absolute space. Furthermore, it presents Galilean transformation and the principle of relativity, inadequacy of Galilean relativity and emergence of the spatial theory of relativity with an emphasis on physical understanding, as well as the debate over relative motion versus absolute motion and Mach's principle followed by the principle of equivalence. The natural follow-on to this section is the physical foundations of general theory of relativity. Lastly, the book ends with some new issues and possibilities regarding further modifications of the laws of motion leading to the solution of a number of fundamental issues closely connected with the characteristics of the cosmos. It is a valuable resource for undergraduate students of physics, engineering, mathematics, and related disciplines. It is also suitable for interdisciplinary coursework and introductory reading outside the classroom.