Essential Mathematics and Statistics for Science


Book Description

Basic Mathematics and Statistics for Science is a low-level introduction to the essential techniques students need to understand. It assumes little prior knowledge, and adopts a gentle approach that leads through examples in the book and website. No other text provides this range of educational support for science students. The integration between book and website provides study options that would be impossible through a book alone, and allows students to study in ways that suit their own circumstances and preferences. The combination of book and website also provides ready-prepared material for lectures, tutorials and computer practicals. Tutors can use the material to develop a variety of coherent programme using different learning styles. The book develops the mathematics and statistics through examples and questions that reflect the scientific context, and has succeeded in being relevant to a range of undergraduate science programmes.




Essential Mathematics and Statistics for Forensic Science


Book Description

This text is an accessible, student-friendly introduction to the wide range of mathematical and statistical tools needed by the forensic scientist in the analysis, interpretation and presentation of experimental measurements. From a basis of high school mathematics, the book develops essential quantitative analysis techniques within the context of a broad range of forensic applications. This clearly structured text focuses on developing core mathematical skills together with an understanding of the calculations associated with the analysis of experimental work, including an emphasis on the use of graphs and the evaluation of uncertainties. Through a broad study of probability and statistics, the reader is led ultimately to the use of Bayesian approaches to the evaluation of evidence within the court. In every section, forensic applications such as ballistics trajectories, post-mortem cooling, aspects of forensic pharmacokinetics, the matching of glass evidence, the formation of bloodstains and the interpretation of DNA profiles are discussed and examples of calculations are worked through. In every chapter there are numerous self-assessment problems to aid student learning. Its broad scope and forensically focused coverage make this book an essential text for students embarking on any degree course in forensic science or forensic analysis, as well as an invaluable reference for post-graduate students and forensic professionals. Key features: Offers a unique mix of mathematics and statistics topics, specifically tailored to a forensic science undergraduate degree. All topics illustrated with examples from the forensic science discipline. Written in an accessible, student-friendly way to engage interest and enhance learning and confidence. Assumes only a basic high-school level prior mathematical knowledge.




Essential Mathematics for Science and Technology


Book Description

This is an entry level text for a wide range of courses in computer science, medicine, health sciences, social sciences, business, engineering and science. Using the phenomenally successful approach of the bestselling Engineering Mathematics by the same authors, it takes you through the math step-by-step with a wealth of examples and exercises. It is an appropriate refresher or brush-up for sci-tech and business students whose math skills need further development. Offers a unique module approach that takes users through the mathematics in a step-by-step fashion with a wealth of worked examples and exercises. Contains Quizzes, Learning Outcomes and Can You? Checklists that guide readers through each topic and focus understanding. Ideal as reference or a self-learning manual.




Essential Mathematics for Political and Social Research


Book Description

"More than ever before, modern social scientists require a basic level of mathematical literacy, yet many students receive only limited mathematical training prior to beginning their research careers. This textbook addresses this dilemma by offering a comprehensive, unified introduction to the essential mathematics of social science. Throughout the book the presentation builds from first principles and eschews unnecessary complexity. Most importantly, the discussion is thoroughly and consistently anchored in real social science applications, with more than 80 research-based illustrations woven into the text and featured in end-of-chapter exercises. Students and researchers alike will find this first-of-its-kind volume to be an invaluable resource."--BOOK JACKET.




Essentials of Mathematical Statistics


Book Description

This text combines the topics generally found in main-stream elementary statistics books with the essentials of the underlying theory. The book begins with an axiomatic treatment of probability followed by chapters on discrete and continuous random variables and their associated distributions. It then introduces basic statistical concepts including summarizing data and interval parameter estimation, stressing the connection between probability and statistics. Final chapters introduce hypothesis testing, regression, and non-parametric techniques. All chapters provide a balance between conceptual understanding and theoretical understanding of the topics at hand.




Practical Statistics for Data Scientists


Book Description

Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data




Data Science and Machine Learning


Book Description

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code




Mathematics for the Life Sciences


Book Description

An accessible undergraduate textbook on the essential math concepts used in the life sciences The life sciences deal with a vast array of problems at different spatial, temporal, and organizational scales. The mathematics necessary to describe, model, and analyze these problems is similarly diverse, incorporating quantitative techniques that are rarely taught in standard undergraduate courses. This textbook provides an accessible introduction to these critical mathematical concepts, linking them to biological observation and theory while also presenting the computational tools needed to address problems not readily investigated using mathematics alone. Proven in the classroom and requiring only a background in high school math, Mathematics for the Life Sciences doesn't just focus on calculus as do most other textbooks on the subject. It covers deterministic methods and those that incorporate uncertainty, problems in discrete and continuous time, probability, graphing and data analysis, matrix modeling, difference equations, differential equations, and much more. The book uses MATLAB throughout, explaining how to use it, write code, and connect models to data in examples chosen from across the life sciences. Provides undergraduate life science students with a succinct overview of major mathematical concepts that are essential for modern biology Covers all the major quantitative concepts that national reports have identified as the ideal components of an entry-level course for life science students Provides good background for the MCAT, which now includes data-based and statistical reasoning Explicitly links data and math modeling Includes end-of-chapter homework problems, end-of-unit student projects, and select answers to homework problems Uses MATLAB throughout, and MATLAB m-files with an R supplement are available online Prepares students to read with comprehension the growing quantitative literature across the life sciences A solutions manual for professors and an illustration package is available




Math for Scientists


Book Description

This book reviews math topics relevant to non-mathematics students and scientists, but which they may not have seen or studied for a while. These math issues can range from reading mathematical symbols, to using complex numbers, dealing with equations involved in calculating medication equivalents, the General Linear Model (GLM) used in e.g. neuroimaging analysis, finding the minimum of a function, independent component analysis, or filtering approaches. Almost every student or scientist, will at some point run into mathematical formulas or ideas in scientific papers that may be hard to understand, given that formal math education may be some years ago. In this book we will explain the theory behind many of these mathematical ideas and expressions and provide readers with the tools to better understand them. We will revisit high school mathematics and extend and relate this to the mathematics you need to understand the math you may encounter in the course of your research. This book will help you understand the math and formulas in the scientific papers you read. To achieve this goal, each chapter mixes theory with practical pen-and-paper exercises such that you (re)gain experience with solving math problems yourself. Mnemonics will be taught whenever possible. To clarify the math and help readers apply it, each chapter provides real-world and scientific examples.




Essential Mathematical Biology


Book Description

This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.